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MODALITY ANALYSIS OF PATTERNS IN REACTION-DIFFUSION SYSTEMS WITH
RANDOM PERTURBATIONS

In this paper, a distributed Brusselator model with diffusion is investigated. It is well known that this model undergoes
both Andronov—Hopfand Turing bifurcations. It is shown that in the parametric zone of diffusion instability the model
generates a variety of stable spatially nonhomogeneous structures (patterns). This system exhibits a phenomenon
of the multistability with the diversity of stable spatial structures. At the same time, each pattern has its unique
parametric range, on which it may be observed. The focus is on analysis of stochastic phenomena of pattern formation
and transitions induced by small random perturbations. Stochastic effects are studied by the spatial modality analysis.
It is shown that the structures possess different degrees of stochastic sensitivity.
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Introduction

The study of self-organization [1,2] is a challenging task for modern science. One of the many
mechanisms is spatial pattern formation caused by diffusion instability, first modeled and studied by Alan
Turing in 1952 [3]. Various patterns were discovered in biology, chemistry, physics and other fields of
science. With proper mathematical methods, assisted by computer modeling, pattern formation dynamics
can be studied and predicted.

A necessary part of the modeling process is the simulation of random perturbations. In fact, these
seemingly small interferences are present in every system. Here, the most fundamental example is the
Brownian motion in any kind of substance. These perturbations are chaotic and unpredictable, yet often
they are the cause for stability and order. Therefore, the study of stochastic phenomena in dynamical
systems is crucial for understanding self-organization processes in nature.

The analysis of pattern formation mechanisms attracts researchers from diverse fields of natural science
(see [4-8]).

This work is devoted to studying the various phenomena connected with the pattern formation in the
distributed Brusselator model with diffusion [9]. Section 1 introduces deterministic pattern formation in
the parametric zone of Turing instability. It is shown that the system under consideration is multistable: for
the same parameter values various different patterns can be generated, while the form depends on initial
conditions. Additionally, most patterns appear in their specific parametric zones. We perform a modality
analysis of the transient behavior in the pattern formation.

Section 2 is devoted to noise-induced phenomena in the model with random perturbations. First, the
phenomenon of the stochastic pattern generation is considered. It is shown that the perturbed model is
able to generate temporarily stable structures similar to the patterns formed in the instability zone. Next,
pattern transformations under the influence of small noise are investigated by modality analysis. These
transformations show sensitivity difference of pattern types.

§ 1. Diffusion instability and patterns

The stochastic distributed Brusselator model defined by the system of two diffusion equations is con-
sidered:
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Here, u(t,z), v(t,z) are concentrations of the reagents, parameters a and b are positive, D,, and D,
are diffusion coefficients, £(¢,x) and 7(t,z) are two independent random processes, and ~ is the noise
intensity coefficient. The scalar spatial variable x belongs to the [0, L] interval. The system has the
following zero-flux boundary conditions:
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%(t,O) = %(t,L) = %(t,O) = %(t,L) =0. (1.2)
The state of a distributed system, in which the values of system variables are uniform through space
and equal to the equilibrium values of the corresponding nondistributed system is called a homogeneous
equilibrium state. The instability of homogeneous equilibrium in the diffusion system is called Turing
instability or diffusion instability. Loss of stability is called Turing bifurcation.
Stable spatially nonhomogeneous states are formed in the parametric zone of Turing instability. In this
paper we fix a = 3, D, = 10, and L = 40. The Andronov-Hopf boundary is b4z = 10 and the Turing
boundary is by = (1 + \/O.9Du)2. These borders are shown in Fig. 1.
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Fig 1. Bifurcation diagram of Brusselator (1.1) with a = 3, D, = 10, v = 0.

Remark 1.1. Note that bifurcation boundaries can be found analytically. For these evaluations it is
assumed that the random perturbations are excluded (v = 0).

For numerical modeling of solutions w;; = w(t;,x;), v;; = v(t;,2;) of the system 1.1, we used the
following explicit scheme 1.3 with the temporal step 7 and the spatial step h:

Uji—1 — 2Uj5; + Ujit

Uji1,i = Wi + T fii+ 7Dy % + 7.4
(1.3)
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where
fii = fuji,vi), g5 = 9(uji,v5:), tj=jr, x =ih,

fu,v) =a— (b4 Du+u?v, g(u,v) = bu—u?v,

r=10"% h=02.

Here, {;; and 7;; are uncorrelated Gaussian noises with intensity v and parameters E¢;; = En;; = 0,

E¢&;,i8k = Enj,itkg = 05,i0k,1-
Let b = 9, v = 0, in this case the Turing bifurcation value is D] = 4.(4). The influence of noise
is excluded, making the model entirely deterministic. Initial conditions are generated using the following

discrete scheme:
_ 27"1'2‘)\ _ 27T.%'Z')\
Ug; = U + € COS i , Vpi =T+ Ecos i . (1.4)
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By adjusting parameters € and A, various spatial deviations from the homogeneous equilibrium state
u, v can be produced. These periodic forms satisfy the zero-flux boundary conditions (1.2) if A is an integer
or a half-integer and can be used as the initial state in numerical simulations. Changing these conditions
yields various stable patterns for fixed values of D, (see Fig. 2).
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Fig 2. Examples of spatial patterns: D, = 2 (left), D, = 4 (right)

The patterns appear as wave-like structures of varying periodicity and tendency on the left edge of the
system space. To distinguish them we use the number of peaks (integer or half-integer) and direction (up
or down).

Changing the diffusion coefficient affects the shape of the patterns. In the examples shown in Fig. 3,
the 4-peak patterns (left) are generated for D, = 2.5 (solid), D, = 3.3 (dashed) and D, = 4.0 (dotted),
and the 4.5-peak patterns (right) are generated for D, = 2.0 (solid), D, = 3.0 (dashed) and D, = 4.0
(dotted).
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Fig 3. Variations of 4-peak and 4.5-peak patterns for different D, values

As the coefficient D,, decreases, the wave extrema retreat from the equilibrium value 4 = 3. As it gets
closer to the bifurcation point D} = 4.(4), the extrema become closer to @ and converge at D.

Furthermore, each pattern can be generated in a certain corresponding span of D,,. Such parametric
zones, in which the said pattern is preserved by the system, are called structural stability intervals. For
some structures these intervals are wide, while for others they can be rather narrow. Outside its interval,
the pattern dissipates with time, and a more stable heterogeneous state is observed. Figure 4 displays
stability intervals for 4-peak and 4.5-peak patterns. These two types of patterns have the longest structural
stability intervals.

The next step is to investigate temporal dynamics. The following color diagrams display the process
that takes place: the horizontal axis is the temporal axis, while the vertical one is the spatial axis. The
value of u at the given point of space and moment of time is presented by color. Formula (1.4) is used for
generating initial conditions, while the scheme (1.3) is used for process modeling of dynamics (see Fig. 5).
Below the color diagram, we show snapshots of the system state taken at different moments of time.
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Fig 5. Pattern formation dynamics for D, =2, A =3, =2
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This figure shows the most common pattern formation process. Note that the transition from the initial
values to a stable pattern occurs relatively fast in one stage. This, however, is not always the case due to the
multistability and coexistence of several patterns. Transient structures may appear during the multi-stage
formation process as it is shown in Fig. 6.

The 8-peak and 7-peak patterns can be generated for lower D, values, however, for D, = 2 these
patterns can only appear as transient and are replaced by other, more stable patterns.

Note that such a visualization does not provide sufficient information about less prominent coexisting
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Fig 6. Pattern formation dynamics for D,, =2, A =8, =2

patterns. For further study, the spatial modality analysis is applied. In this analysis, we have used the
functions Cj(t):

L& 2rkax;
Ck(tj) :CIZ‘ ZZhu]‘ﬂ'COS < I Z>, (1.5)
1=0
L
Lh = E, Ty = ih, h=0.2.

These functions provide more precise quantitative information on the transient spatial modality of the
currently formed patterns. Here, the parameter k corresponds to the quantity of peaks in the pattern. Its
values can be integers or half-integers due to the boundary conditions (1.2). The structure with the highest
absolute value of (', will be called dominant. Figure 7 shows results of the spatial modality analysis for
the transient process shown in Fig. 6.

At the start of the simulation, the 8-peak pattern is the most prominent, while other kinds of structures
appear slowly. Afterwards, the initial pattern is no longer dominant, as the absolute value of C7 becomes
greater than Cg and the 7-peak pattern is now observed. Finally, at the end of the simulation, C'; loses its
dominance with respect to Cg, which corresponds to the 6-peak pattern seen at the end of Fig. 6. Functions
C}, representing the transient patterns will gradually approach zero, while those of the stable structures will
remain at fixed values.

60
30"
ii/ 0
©
30
_60’\ k=8 —k=T5k=7 k=65k=6
0 10 20 30 40 50

t
Fig 7. Spatial modality analysis of pattern formation for D, =2, A =8, ¢ = 2
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§ 2. Stochastic pattern formation

The main focus of this part is studying various stochastic phenomena in the system due to small random
perturbations. Adding noise to the model makes it more similar to real processes from nature. The goal
is to make predictions for the behavior of such systems. The two noise-induced phenomena viewed in
this section are the pattern formation in the Turing stability zone and the transitions between coexisting
patterns.

Let us assume a = 3, b =9, D, = 10, D,, = 4.46 > D] = 4.(4). For this set of parameters,
the deterministic system exhibits the stable homogeneous equilibrium. This equilibrium is used as an
initial condition. The system is in the parametric zone of Turing stability, where the pattern generation
is impossible if ¥ = 0. Adding small random perturbations causes the emergence of states similar to the
patterns observed in the previous section. These structures are by no means stable due to the stochastic
nature of the model. Simulation results are shown in Fig. 8.
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Fig 8. Noise-induced pattern formationa =3, b =19, D, = 10, D, = 4.46, v = 0.001: temporal
dynamics (left) and state snapshot at ¢ = 13 (right)

Despite being in the stability zone, the system with random perturbations is able to generate spatial
patterns. Moreover, the system shows multistability: in Fig. 8 two patterns with 4- and 4.5 peaks are
prominent. Two matters require investigation: whether or not these are the only possible patterns and
which patterns are seen more often than others. For further study, the spatial modality analysis is used.
Using the method from the previous section (see formula (1.5)) yields the results displayed in Fig. 9. Here,
the dynamics of the coefficients Cy(t) is shown for different k.
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Fig 9. Spatial modality analysis of pattern formation for a = 3, b =9, D, = 10, D,, = 4.46,
~v = 0.001
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These results correlate with the dynamics from Figure 8, but unlike in the deterministic case these
curves are difficult to perceive: all modes need to be analyzed, while some of them fluctuate widely. Under
these circumstances, another characteristics of the modality are necessary. To estimate the comparative
contribution of the spatial mode with & peaks in the time interval [0, T'], we will use the power of kth mode
Wi, as follows:

T,
-
Wi g7 > (G + CR() ).
j=1
T
T,=—, tj=jr, 7=10""
T
A calculation of this value provides information on the presence of the mixture of various patterns.
A high value of W corresponds to the higher weight of k-peak mode with the prolonged period of
dominance. Table 1 shows the most notable powers for the simulation described in Fig. 8, where 17" = 25.

Table 1. Mode powers for D, = 4.46, v = 0.001

k 3 3.5 4 4.5 5 5.5 6
Wi || 0.0344 | 0.0782 | 0.2973 | 0.0948 | 0.0568 | 0.0181 | 0.0079

It can be seen that the 4-peak pattern was the most prominent during the simulation. This is also
reflected by the mode powers: W, has the greatest value. Using this approach, it is possible to perform a
quantitative statistical analysis of the noise-induced pattern formation. Based on these results it is possible
to predict (to a certain degree) which pattern will be observed more often than others. In Table 2, mean
values gathered from 20 samples are shown. The stochastic nature of the process implies that each time the
result is different. However, one can point out the apparent dominance of 3.5-, 4- and 4.5-peak patterns.

Table 2. Mean values of powers for D, = 4.46, v = 0.001

k 3 3.5 4 4.5 5 5.5 6
Wi || 0.0419 | 0.1197 | 0.2118 | 0.1216 | 0.0393 | 0.0221 | 0.0087

We can summarize that the deterministic model under consideration is multistable and various transient
patterns are observed. Due to these factors, the small perturbations can affect the formation dynamics. As a
result, the stochastic system generates a different pattern from the one observed in the deterministic model.

Besides the effect on formation dynamics, even weak noise can cause some of the patterns to become
unstable and dissipate, while others remain stable. This observation implies difference in the stochastic
sensitivity of different coexisting patterns.

Figure 10 shows transition from a stable 7-peak pattern that is generated and preserved by the deter-
ministic model. Applying low intensity noise causes it to dissipate, forming a transient 6-peak pattern,
which dissipates as well. At the end of this simulation a relatively stable 5-peak pattern is generated.

This process can be investigated by mode analysis. Figure 11 shows the slow decay of the 7th mode,
the temporary emergence of the 6th and the establishment of the 5th mode.

While not yielding much new information that allows prediction of transition dynamics, this technique
shows these processes from a new perspective. Furthermore, it can be used for an in-depth study of pattern
sensitivity by analyzing fluctuations of corresponding mode and their correlation with noise intensity.
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Fig 10. Pattern transitions fora =3,06=9, D, =10, D, = 2, v = 0.004
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Fig 11. Modality analysis of pattern transitions a = 3, b=9, D, = 10, D, = 2, v = 0.004

Conclusion

This paper has examined the distributed stochastic Brusselator model with diffusion. Under certain
conditions the system meets Turing instability requirements and generates spatially nonhomogeneous stable
states. Investigation of its behavior in the Turing instability zone without random perturbations shows that
the system is multistable and the number of coexisting patterns may be high. Such structures may have
different forms, depending on the diffusion flow difference of the reaction components. While some
patterns appear to be stable, others can be observed only as transient structures.

To study processes concerning pattern formation dynamics, the mode analysis method has been in-
troduced. It is shown that the data received from this method correlates with the data obtained from
deterministic cases. Mode functions and powers provide additional information necessary for the statistical
analysis of stochastic phenomena, the major example being particular pattern dominance.

Finally, the effects of random perturbations have been shown. Small intensity noise causes pattern
formation in the Turing stability zone, where deterministic formation is impossible. Furthermore, the
multistability persists even in this zone, as the coexisting patterns tend to replace each other. In the stability
zone stochastic transitions of coexisting patterns are observed. Under the effect of random perturbations
some structures dissipate, though they appeared to be stable in the deterministic case, while less sensitive
structures form instead. This implies difference in the stochastic sensitivity of these structures. The said
stochastic phenomena are studied by using direct modeling with the assistance of mode analysis.

Funding. This research was supported by the Russian Science Foundation (project no. 16-11-10098).
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A. II. Konunuuenko, JI. b. Pawko
AHaJIN3 MOTAJTBHOCTH MATTEPHOB B cHCTeMax peaknuu-1udy3un co caydaiiHbIMH BO3MYIIEHHAMHU

Hwurara: Hzeecmus Uncmumyma mamemamuxu u uHgopmamury YOMypmcKoeo 20Cy0apCcmeenHozo YHu-
sepcumema. 2019. T. 53. C. 73-82.

Knrouesvie crnosa: monens peakimu-nudQysnn, HeyCTOUYHBOCTD 110 THIOPUHTY, CAMOOPraHU3aLus, pOPMUPOBAHUE
naTTepHa, MHAYIMPOBAHHAS IIyMOM JMHAMHKA, MOJAIBHBIN aHAIH3.

YIK: 517.958, 544.431.8
DOI: 10.20537/2226-3594-2019-53-07

B pabore uccnemyeTcst pacnpeieneHHas MoJienb Oproccenstopa ¢ nuddysueii. M3BecTHO, UTO B 3TOH MOAENTH MPo-
siBIsfoTCs Oudypkarum AunpoHoBa—Xonda u Teropunra. [TokasaHo, 4To B mapameTpuyeckoit 30He qud@y3noHHON
HEYyCTOWYMBOCTH MOJIEIIb TEHEPUPYET MHOKECTBO YCTOWYMBBIX MPOCTPAHCTBEHHO HEOJHOPOIHBIX CTPYKTYp (Iarrep-
HOB). DTa cHCTeMa JIEMOHCTPUPYET (peHOMEeH MYNBTHCTaOUIBHOCTH C Pa3HOOOpa3neM YCTOHYHBBIX MTPOCTPAHCTBEH-
HBIX CTPYKTYp. B TO ke BpeMsl kax/plil IaTTepH UMEET CBOW YHUKAIbHBIA NapaMETPUUECKUN AMANla30H, B KOTOPOM
OH MOXXeT HabmomaThes. AKIEHT CAETaH Ha aHaJIM3€ CTOXAaCTHYECKHX SBICHHH (POPMHUPOBAHUS MAaTTEPHA M MEpexo-
JIOB, BBI3BAaHHBIX MaJIBIMH CIIy4alHBIMH BO3MYyIIeHUsIMU. CToxacTiueckue 3p(eKThl N3y4aroTcs ¢ MTOMOIIBIO aHAIN3a
IIPOCTPAHCTBEHHOW MoaimbHOCTH. [IoKazaHo, 4TO CTPYKTYpBI 008 Jal0T Pa3IMYHON CTENEHBIO0 CTOXaCTHYECKON UyB-
CTBUTENBHOCTH.

®unancupoBanue. Padora oimonHeHa npu noanaepxkke PH® (mpoekt Ne 16-11-10098).
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