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Introduction

Recently, considerable interest has been noted in rings and other algebraic structures equipped with

grading. This is explained by the fact that many important classes of rings, for example, polynomial rings,

matrix rings, group rings, admit a natural grading.

A natural and important question in the theory of graded rings is to find graded analogues of some

classical theorems. For example, C. Park in his work [17] proved Krull’s principal ideal theorem, the

Krull–Akizuki theorem and the Mori–Nagata theorem in the graded case. S. Paul Smith in his work [21]

proved some category equivalences involving the quotient category QGr(kQ) := Gr(kQ)/Fdim(kQ) of

graded kQ-modules modulo those that are the sum of their finite-dimensional submodules. J. Bell and

J. Zhang in their work [2] proved, for two connected graded algebras A and B that are finitely generated

in degree one, that if A is isomorphic to B as ungraded algebras, then they are also isomorphic to each

other as graded algebras. J. Chen and Y. Kim in their work [3] show that if a graded submodule of a

noetherian module cannot be written as a proper intersection of graded submodules, then it cannot be

written as a proper intersection of submodules at all. In [4] I. DellAmbrogio and G. Stevenson establish

an inclusion-preserving bijection between, on the one hand, the twist-closed localizing subcategories of the

derived category, and, on the other hand, subsets of the homogeneous spectrum of prime ideals of the ring.

It is well known that the decomposition of injective modules over noetherian rings is one of the most

aesthetic and important results in commutative algebra. Our aim is to prove similar results for graded

noetherian rings. This is important for us to understand the structure of the noetherian modules on the

graded rings.

We now give a brief outline of the paper.

In Section 1, we set notation and review some basics of graded commutative rings, torsion theories

and t-structures.

In Section 2, we give a definition of gr-Bass numbers and obtained the following important theorem:

Theorem 2.1 Let R be a gr-noetherian G-graded ring and M ∈ gr(R). Then

µgr
i (p, g,M) = dimκ(p)

ExtiR(p)
(κ(p),M(p)(g)).

In Section 3, we show that a left exact radical functor F is of the form ΓV for a specialization-closed

subset V . This is a generalization of Yoshino and Yoshizawa’s theorem in the case of graded rings (see

also [23, Theorem 2.6]).
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Theorem 3.1 The following conditions are equivalent for a left exact preradical functor F on Gr(R).

(1) F is a radical functor.

(2) F preserves injectivity.

(3) F is a section functor with support in a specialization-closed subset of Specgr(R).

(4) RF is an abstract local cohomology functor.

Symbols

G totally ordered abelian group

R G-graded ring

Mod(R) category of R-modules

Gr(R) category of graded R-modules

gr(R) category of gr-noetherian graded R-modules

A abelian category

C(A) category of A-complexes

K(A) homotopy category of chain complexes in A
D(A) derived category of A

For more information on graded rings, see [8, 15–17, 19, 20].

§ 1. Preliminaries

§ 1.1. Graded commutative rings and graded modules

In this article we always assume that G is a totally ordered abelian group. For the definition of

G-graded commutative rings and modules see, for example, [15, 16]. Let R be a G-graded ring and

M = ⊕g∈GMg be a graded R-module, we let h(M) := ∪g∈GMg be the set of homogeneous elements. We

denote by Mod(R) the category of R-modules, and by Gr(R) the category of graded R-modules whose

objects are graded R-modules, and the morphisms are homomorphisms preserving grading:

HomGr(R)(M,N) = {f ∈ HomR(M,N) : f(Mg) ⊆ Ng for all g ∈ G}.

Obviously, Gr(R) is a Grothendieck category [16, Proposition 2.2].

Gr-noetherian module is a graded R-module M in which every sequence of graded submodules

N1 ⊂ N2 ⊂ · · · ⊂ Nn ⊂ . . . is stabilized. If R as a R-module is gr-noetherian, then we call R
gr-noetherian ring. If R is a gr-noetherian ring, then the category of gr-noetherian R-modules gr(R) is

an abelian category [16, Proposition 2.2].

A gr-multiplicative set is a subset S of a graded ring R such that the following two conditions hold:

(1) 0 6∈ S, 1 ∈ S, S ⊂ h(R).

(2) For all x and y in S, the product xy is in S.

Let M =
⊕

g∈GMg be a graded R-module. The grading of the module M induces a grading on the

modulus of quotients S−1M over the gr-multiplicative system S:

(S−1M)g =
{m

s
∈ S−1M |m ∈ Mh, s ∈ S ∩Rk, g = hk−1

}

.

A graded ring R is a gr-local ring if R has a unique graded maximal ideal.

Let R be a gr-noetherian G-graded commutative ring, and M a graded module over R. We say that

p ∈ Specgr(R) is a gr-associated prime of M if p is the annihilator of some x ∈ h(M). The set of

gr-associated primes of M is denoted by AssgrR (M) or Assgr(M).
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§ 1.2. Gr-injective modules over gr-noetherian rings

D e f i n i t i o n 1.1. Let R be a G-graded ring.

(1) A graded R-module M is gr-injective if it is injective as an object of the category Gr(R).

(2) Let N be a graded submodule of M . N is said to be an gr-essential submodule of M if for every

gr-submodule H of M the equality H ∩N = 0 implies that H = 0.

(3) The gr-injective hull Egr(M) of a graded module M is both the smallest gr-injective module

containing it and the largest gr-essential extension of it.

(4) A graded module is gr-indecomposable if it is nonzero and cannot be written as a direct sum of two

nonzero graded submodules.

P r o p o s i t i o n 1.1. If p ∈ Specgr(R), then Assgr(R
p
) = {p} and Assgr(Egr(R

p
)) = {p}.

P r o o f. p is a gr-associated prime of R/p because there is a monomorphism from R/p to itself. If

Q ∈ Assgr(R
p
), we must show that Q = p. Suppose that Q is the kernel of an epimorphism R → Rx.

Then s ∈ Q iff sx ∈ p iff s ∈ p (because p is prime).

Let q ∈ Assgr(Egr(R
p
)), then q = AnnR(x) and 0 6= x ∈ h(Egr(R

p
)). By the definition of the gr-

injective hull, R
p

is a gr-essential submodule of Egr(R
p
). There is an element r ∈ h(R), and 0 6= rx ∈ R

p
,

obviously, r 6∈ q. We have Ann(rx) = p ⊃ Ann(x) = q. For any p ∈ p, we have prx = 0, so pr ∈ q, but

r 6∈ q, hence p ∈ q, that is, p = q. �

T h e o r e m 1.1. Let R be a gr-noetherian G-graded commutative ring.

(1) For every family {Jλ}λ∈Λ of gr-injective modules, the direct sum
⊕

λ∈Λ Jλ is also gr-injective.

(2) Every gr-injective module has an indecomposable decomposition.

(3) If 0 6= E is a gr-indecomposable gr-injective module, then E = Egr(R
p
(g)), where p ∈ Specgr(R)

and g ∈ G.

(4) Let p, q ∈ Specgr(R), g, h ∈ G and let p 6= q, then Egr(R
p
(g)) 6= Egr(R

q
(h)).

P r o o f.

(1) See [10, Theorem 5.9].

(2) See [10, Theorem 5.9].

(3) Let p ∈ Assgr(E), there exist x ∈ h(E) and g ∈ G such that Rx ∼= R
p
(g). Hence E = Egr(Rx).

(4) This is Proposition 1.1. �

§ 1.3. Torsion theories

Our main references for the torsion theories are [5, 12, 18].

A torsion theory in a Grothendieck category A is a couple (T ,F) of strictly full additive subcategories

called the torsion class T and the torsion free class F such that the following conditions hold:

(1) Hom(T ,F) = 0.

(2) For all M ∈ Obj(A), there exists N ⊂ M , N ∈ Obj(T ) and M/N ∈ Obj(F).

For every object M there exist the largest subobject t(M) ⊂ M which is in T and it is called the

torsion part of M .

t : M 7→ t(M)

is an additive functor. A torsion theory is hereditary if T is closed under subobjects, or equivalently, t is

left exact functor.

A radical functor, or more generally, a preradical functor, has its own long history in the theory of

categories and functors. See [7] or [13] for the case of module category. Let F,G : A → A be functors.

Recall that F is said to be a subfunctor of G, denoted by F ⊂ G, if F (M) is a subobject of G(M) for all

M ∈ A and if F (f) is a restriction of G(f) to F (M) for all f ∈ HomA(M,N).
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D e f i n i t i o n 1.2. A functor F : A → A is called a preradical functor if F is a subfunctor of 1.

L e m m a 1.1 (see [23, Lemma 1.1]). Let F : A → A be a preradical functor and assume that F is a

left exact functor on A. If N is a subobject of M , then the equality F (N) = N ∩ F (M) holds.

D e f i n i t i o n 1.3. A preradical functor F is called a radical functor if F (M/F (M)) = 0 for all

M ∈ Obj(A).

If F : A → A is a left exact radical functor, then there is a hereditary torsion theory (TF ,FF ) by

setting

TF = {M ∈ A |F (M) = M},

FF = {M ∈ A |F (M) = 0}.
(1.1)

§ 1.4. t-structures

The notion of a t-structure arose in the work [1] of Beilinson, Bernstein, Deligne, and Gabber on

perverse sheaves.

Let D be a triangulated category. t-structure in D is a pair t = (U ,W) of full subcategories, closed

under taking direct summands in D, which satisfy the following properties:

(t-S.1) HomD(U,W [−1]) = 0, for all U ∈ U and W ∈ W;

(t-S.2) U [1] ⊂ U , W[−1] ⊂ W;

(t-S.3) for each Y ∈ D, there is a triangle A → Y → B → A[1] in D, where A ∈ U and B ∈ W[−1].

A t-structure t = (U ,W) in D is called a stable t-structure on D if U and W are triangulated

subcategories.

T h e o r e m 1.2 (see [14, Proposition 2.6]). Let D be a triangulated category and U a triangulated

subcategory of D. Then the following conditions are equivalent for U .

(1) There is a triangulated subcategory W of D such that (U ,W) is a stable t-structure on D.

(2) The natural embedding functor i : U → D has a right adjoint ρ : D → U .

If this is the case, setting δ = i ◦ ρ : D → D,we have the equalities U = Im(δ) and W = Ker(δ). There

is an natural morphism φ : δ → 1, where 1 is the identity functor on D. Every C ∈ D can be embedded

in a triangle of the form

δ(C)
φ(C)
−−−→ C → D → δ(C)[1].

§ 2. Gr-Bass numbers

Let R be a gr-noetherian G-graded ring. For each p ∈ Specgr(R), S = h(R)−p is a gr-multiplicative

system and R(p) := S−1R is a gr-local ring. pR(p) is the unique gr-maximal ideal of R(p). We define

κ(p) =
R(p)

pR(p)
.

P r o p o s i t i o n 2.1. Suppose that f : M → N is a monomorphism in Gr(R). Then N is an essential

extension of M if and only if for every p ∈ Specgr(R) the induced morphism

f(p) : HomR(p)
(κ(p),M(p)) → HomR(p)

(κ(p), N(p))

is an isomorphism.

P r o o f. Since localization is exact and HomR(p)
(κ(p),−) is left exact, f(p) is always a monomor-

phism. Let S = h(R)−p. Since R
p

is finitely presented, we have S−1HomR(
R
p
,M) ∼= HomR(p)

(κ(p),M(p))

and S−1HomR(
R
p
, N) ∼= HomR(p)

(κ(p), N(p)).
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First, let N be an essential extension of M and let 0 6= f
s
∈ S−1HomR(

R
p
, N). We have 0 6= f(1) ∈

N, so there is an element r ∈ h(R) such that 0 6= rf(1) = f(r) ∈ M . It is obvious that r 6∈ p, that is,

r ∈ S, so rf
rs

∈ S−1HomR(
R
p
,M) and its image in S−1HomR(

R
p
, N) is f

s
, so f(p) is an isomorphism.

Now let f(p) be an isomorphism for any p ∈ Specgr(R). Let x ∈ h(N). There is a graded prime ideal

p ∈ Assgr(Rx) and an element r ∈ h(R) such that y = rx and AnnR(y) = p. We define a homomorphism

f ∈ HomR(
R
p
, N) such that f(1) = y. There is a homomorphism h ∈ HomR(

R
p
,M) and an element

s ∈ S such that h
s
(11) =

f
1 (

1
1 ) =

y
1 . There is an element u ∈ S such that h(1) = usy = usrx ∈ M , hence

N is an essential extension of M. �

Let M be a graded R-module. A gr-injective resolution is an exact sequence

E• = 0 → M → E0 d0
−→ E1 d1

−→ E2 d2
−→ . . . ,

where Ei is a gr-injective module. If Ker(di) → Ei is an essential extension, then we say that E• is a

gr-minimal injective resolution.

P r o p o s i t i o n 2.2. Let R be a gr-noetherian ring and M be an R-module with a gr-injective

resolution E•. Then E• is a gr-minimal injective resolution if and only if for all p ∈ Specgr(R) and all i,
the induced morphisms HomR(p)

(κ(p), E
i
(p)) → HomR(p)

(κ(p), E
i+1
(p) ) are zero.

P r o o f. Let Zi = ker(di) = Im(di−1). E• is gr-minimal if and only if Ei is an essential extension

of Zi, if and only if the induced morphism HomR(p)
(κ(p), Z

i
(p)) → HomR(p)

(κ(p), E
i
(p)) is an isomorphism

by Proposition 2.1. Since there are exact sequences 0 → Zi → Ei → Ei+1, and HomR(p)
(κ(p),−)

is left exact, the latter condition holds if and only if the induced morphisms HomR(p)
(κ(p), E

i
(p)) →

HomR(p)
(κ(p), E

i+1
(p) ) are 0. �

P r o p o s i t i o n 2.3. Let R be a gr-noetherian G-graded ring and S be a gr-multiplicative system.

If M is a gr-injective R-module, then S−1M is a gr-injective S−1R-module.

P r o o f. In the nongraded case this is a classical result (see [9, Proposition 2.8]). In the graded case,

it is possible to repeat this proof. �

P r o p o s i t i o n 2.4. Let R be a gr-noetherian G-graded ring and M be a graded R-module with a

gr-minimal injective resolution E•. Then for any p ∈ Specgr(R), E•
(p) are gr-minimal injective resolutions

of M(p).

P r o o f. We know that Ei
(p) are gr-injective R(p)-module by Proposition 2.3. By Proposition 2.2 it is

only necessary to prove that HomR(q)
(κ(q), (E

i
(p))(q)) → HomR(q)

(κ(q), (E
i+1
(p) )(q)) are 0 for all q ⊂ p. We

know that (Ei
(p))(q) = Ei

(q), hence E•
(p) are gr-minimal injective resolutions of M(p) by Proposition 2.2. �

D e f i n i t i o n 2.1. (Gr-Bass numbers) Let R be a gr-noetherian G-graded ring and let M ∈ gr(R)
have a gr-minimal injective resolution E•. By Theorem 1.1, we have

Ei =
⊕

p∈Specgr(R)

⊕

g∈G

[Egr
R (

R

p
)(g)]µ

gr

i
(p,g,M).

µgr
i (p, g,M) are called gr-Bass numbers.

P r o p o s i t i o n 2.5. Let R be a gr-noetherian G-graded ring and M ∈ gr(R). Then, for any i,

µgr
i (p, g,M) = µgr

i (p(p), g,M(p)).

P r o o f. Take a gr-minimal injective resolution E•. By Proposition 2.4, E•
(p) is the gr-minimal

injective resolution of M(p). Since Ei =
⊕

p∈Specgr(R)

⊕

g∈G[E
gr
R (R

p
)(g)]µ

gr

i
(p,g,M), we make localization

and get the result. �
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T h e o r e m 2.1. Let R be a gr-noetherian G-graded ring and M ∈ gr(R). Then

µgr
i (p, g,M) = dimκ(p)

ExtiR(p)
(κ(p),M(p)(g)).

P r o o f. By Proposition 2.5, it suffices to consider the case when (R,m, κ) is a gr-noetherian gr-
local ring and p = m. Let E• be a minimal gr-injective resolution of M . Then Exti

Gr(R)(κ,M) is the

ith cohomology of the complex HomGr(R)(κ,E
•). By the minimality of the resolution all maps in this

complex are zero, so that Exti
Gr(R)(κ,M) = HomGr(R)(κ,E

i). To finish the proof it suffices to show

that

HomGr(R)(κ,E
gr
R (

R

p
)) =

{

0 (if p 6= m)

κ (if p = m).

If p = m, then, by Proposition 2.1, HomGr(R)(κ,E
gr
R (κ)) = HomGr(R)(κ, κ) = κ.

If p 6= m, then there is a homogeneous element x of m not in p. Let f ∈ HomGr(R)(κ,
R
p
), then

0 = f(x) = xf(1), but x in R
p

is not a zero divisor, so f(1) = 0, that is, HomGr(R)(κ,
R
p
) = 0. By

Proposition 2.1, HomGr(R)(κ,E
gr
R (R

p
)) = HomGr(R)(κ,

R
p
) = 0. �

§ 3. Local cohomology

D e f i n i t i o n 3.1. Let R be a gr-noetherian G-graded ring. Let M ∈ Gr(R).

(1) The small gr-support (following [6]) of M is

suppgr(M) = {p ∈ Specgr(R) |Tor
R(p)
∗ (M(p), κ(p)) 6= 0}.

(2) The (usual) gr-support of M is

Suppgr(M) = {p ∈ Specgr(R) |M(p) 6= 0}.

R e m a r k 3.1. Note that suppgr(M) ⊂ Suppgr(M) and the equality holds if M ∈ gr(R) (see,

e.g., [6, Lemma 2.6]).

D e f i n i t i o n 3.2. Let R be a gr-noetherian G-graded ring. Let M ∈ Gr(R).

(1) For any subset V ⊂ Specgr(R) we say that V is a specialization-closed subset if for any p ∈ V and

any q ∈ Specgr(R) we have q ∈ V whenever p ⊂ q.

(2) Let V be a specialization-closed subset of Specgr(R). We can define the section functor ΓV with

support in V as

ΓV (M) =
⋃

{N ⊂ M |Suppgr(N) ⊂ V } =
⋃

{N ⊂ M | suppgr(N) ⊂ V }

for all M ∈ Gr(R).

D e f i n i t i o n 3.3. We denote C = D
+(Gr(R)) in this definition. Let δ : C → C be a triangle

functor. We say that δ is an abstract local cohomology functor if the following conditions are satisfied.

(1) The natural embedding functor i : Im(δ) → C has a right adjoint ρ : C → Im(δ) and δ ∼= i ◦ ρ.

(2) The t-structure (Im(δ),Ker(δ)) divides indecomposable injective objects, by which we mean that

each indecomposable injective object belongs to either Im(δ) or Ker(δ).

T h e o r e m 3.1. The following conditions are equivalent for a left exact preradical functor F on

Gr(R).

(1) F is a radical functor.

(2) F preserves injectivity.
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(3) F is a section functor with support in a specialization-closed subset of Specgr(R).

(4) RF is an abstract local cohomology functor.

The proof of Theorem 3.1 consists of a succession of relatively short lemmas.

L e m m a 3.1. Let R be a gr-noetherian G-graded ring, and V be a specialization-closed subset of

Specgr(R).

(1) If N is a graded submodule of M , then the equality ΓV (N) = N ∩ ΓV (M) holds.

(2) ΓV (M/ΓV (M)) = 0 for every M ∈ Gr(R).

(3) ΓV is a left exact radical functor.

P r o o f. (1) If H ∈ Gr(R), then

H ⊂ ΓV (N) ⇔ H ⊂ N and Suppgr(H) ⊂ V ⇔ H ⊂ ΓV (M) ∩N.

(2) If H ∈ Gr(R), then

H ⊂ ΓV (M/ΓV (M)) ⇔ H ⊂ M/ΓV (M) and Suppgr(H) ⊂ V ⇒ H = 0.

(3) Let 0 → K
f
−→ M

g
−→ N be an exact sequence in Gr(R). By (1) we have ΓV (K) = K ∩ ΓV (M),

hence 0 → ΓV (K) → ΓV (M) is an exact sequence. Let H ∈ Gr(R), we have

H ⊂ KerΓV (g) ⇔ H ⊂ Kerg ∩ ΓV (M) = Imf ∩ ΓV (M) ⇔ H ⊂ ImΓV (f),

hence 0 → ΓV (K) → ΓV (M) → ΓV (N) is an exact sequence. �

L e m m a 3.2. Let R be a gr-noetherian G-graded ring. Let F : Gr(R) → Gr(R) be a left exact

radical functor.

(1) Let p ∈ Specgr(R), then F (Egr
R (R

p
)) is identical to either Egr

R (R
p
) or 0.

(2) F preserves injectivity.

P r o o f. (1) Since F is a left exact radical functor, there is a hereditary torsion theory (TF ,FF ),
which is defined in (1.1). Hence there is an exact sequence

0 → N → Egr
R (

R

p
) → H → 0

with N ∈ TF and H ∈ FF . If N = 0, then Egr
R (R

p
) ∼= H ∈ FF , therefore F (Egr

R (R
p
)) = 0. If

N 6= 0, since Assgr(Egr
R (R

p
)) = {p}, we have Assgr(N) = {p}, hence R/p ⊂ N. Since TF is a

localizing subcategory and N ∈ TF , we have R/p ∈ TF . By Proposition 1.1, Egr
R (R

p
) ∈ TF . Therefore,

F (Egr
R (R

p
)) = Egr

R (R
p
).

(2) For an injective J ∈ Gr(R), by Theorem 1.1 it has an indecomposable decomposition J =
⊕

i∈I E
gr
R (R

pi
)(gi). We set J1 =

⊕

i∈I1
Egr

R (R
pi
)(gi) and J2 =

⊕

i∈I2
Egr

R (R
pi
)(gi), where

I1 = {i ∈ I |F (Egr
R (

R

pi
)) = Egr

R (
R

pi
)},

I2 = {i ∈ I |F (Egr
R (

R

pi
)) = 0}.

By (1) we have J = J1 ⊕ J2. Since TF is closed under taking direct sums and FF is closed under

taking direct products and subsheaves, we have J1 ∈ TF , and J2 ∈ FF . Therefore, we have an equality

F (J) = F (J1)⊕ F (J2) = J1, which is a gr-injective module. �
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P r o p o s i t i o n 3.1. Let R be a gr-noetherian G-graded ring. Let F : Gr(R) → Gr(R) be a left

exact preradical functor which preserves injectivity. Then

(1) F (Egr
R (R

p
)) is identical to either Egr

R (R
p
) or 0.

(2) F (R
p
) is identical to either R

p
or 0.

P r o o f. (1) Since F (Egr
R (R

p
)) is a gr-injective submodule of a gr-indecomposable injective module

Egr
R (R

p
), it is a direct summand of Egr

R (R
p
). Thus the indecomposability of Egr

R (R
p
) forces F (Egr

R (R
p
)) is

either Egr
R (R

p
) or 0.

(2) It follows from Lemma 1.1 that F (R
p
) = R

p
∩ F (Egr

R (R
p
)), therefore F (R

p
) is either R

p
or 0 by (1). �

For a left exact preradical functor F which preserves injectivity, we define a subset VF of Specgr(R)
as follows:

VF =

{

p ∈ Specgr(R) : F (
R

p
) =

R

p

}

.

Note from the proof of Proposition 3.1 that VF is the same as the set

{

p ∈ Specgr(R) : F (Egr
R (

R

p
)) = Egr

R (
R

p
)

}

.

P r o p o s i t i o n 3.2. Let F be a left exact preradical functor which preserves injectivity. Then VF is

a specialization-closed subset.

P r o o f. Let p ∈ VF and q ⊃ p. There is an exact sequence

0 → K →
R

p
→

R

q
.

Since F is a left exact preradical functor, there is an exact sequence

0 → F (K) → F (
R

p
) → F (

R

q
).

We have F (R
p
) = R

p
and F (K) = K ∩F (R

p
) = K by Lemma 1.1, therefore F (R

q
) = R

q
, hence q ∈ VF . �

L e m m a 3.3. Let F be a left exact preradical functor which preserves injectivity. Then the equality

F = ΓVF
holds as subfunctors of 1, where VF is a specialization-closed subset of Specgr(R) defined in

Proposition 3.2.

P r o o f. First of all, we consider the case that M is a finite direct sum of indecomposabe injective

objects
⊕n

i=1E
gr
R (R

pi
)(gi) in Gr(R). Then we have an equality

F (M) =
⊕

pi∈VF

Egr
R (

R

pi
)(gi) = ΓVF

(M)

by Proposition 3.1.

Next, we consider the case that M ∈ gr(R). Since the gr-injective hull Egr(M) of M is a finite direct

sum of indecomposable gr-injective modules, we have already shown that F (Egr(M)) = ΓVF
(Egr(M)).

Thus, using Lemma 1.1, we have

F (M) = M ∩ F (Egr(M)) = M ∩ ΓVF
(Egr(M)) = ΓVF

(M).

Finally, we show the claimed equality for an object M in Gr(R) without any assumption. We should

notice that a graded submodule N ⊂ M belongs to F (M) if and only if the equality F (N) = N holds.

In fact, this equivalence is easily observed from the equality F (N) = N ∩ F (M) by Lemma 1.1. This

equivalence is true for the section functor ΓVF
as well. So N ⊂ M belongs to ΓVF

(M) if and only

if ΓVF
(N) = N . Therefore, we see that N ⊂ F (M) if and only if N ⊂ ΓVF

(M), and the proof is

completed. �
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L e m m a 3.4. Let M• ∈ D(Gr(R)) and let V be a specialization-closed subset of Specgr(R). Then

(1) M• belongs to Im(RΓV ) if and only if M• is quasi-isomorphic to a gr-injective complex whose

components are direct sums of Egr
R (R

p
)(g) with p ∈ V .

(2) M• belongs to Ker(RΓV ) if and only if M• is quasi-isomorphic to a gr-injective complex whose

components are direct sums of Egr
R (R

p
)(g) with p ∈ Specgr(R)− V .

(3) RF is an abstract local cohomology functor.

P r o o f. By [22, Theorem 5.4] or [11, Proposition B.2], every complex of graded R-module has a

K-injective resolution. For any gr-injective complex J• ∈ K(I), RΓV (J
•) = ΓV (J

•) is the subcom-

plex of J• consisting of gr-injective modules supported in V . Hence every object of Im(RΓV ) (resp.

Ker(RΓV )) is a gr-injective complex whose components are direct sums of Egr
R (R

p
)(g) with p ∈ V (resp.

p ∈ Specgr(R) − V ). In particular, if p ∈ V (resp. p ∈ Specgr(R) − V ), then Egr
R (R

p
)(g) ∈ Im(RΓV )

(resp. Egr
R (R

p
)(g) ∈ Ker(RΓV )). Since HomGr(R)(E

gr
R (R

p
)(g)), Egr

R (R
q
)(h)) = 0 for p ∈ V and

q ∈ Specgr(R)−V , we can see that HomK(I)(J
•
1 , J

•
2 ) = HomK(I)(J

•
1 ,ΓV (J

•
2 )) for any J•

1 ∈ Im(RΓV )
and J•

2 ∈ K(I). Hence it follows from the above equivalence that RΓV is a right adjoint of the natural

embedding i : Im(RΓV ) → D(Gr(R)). �

P r o o f o f T h e o r e m 3.1. (1) ⇒ (2), (2) ⇒ (3), (3) ⇒ (1), and (3) ⇒ (4) have already been

proved, respectively, in Lemmas 3.2 (2), 3.3, 3.1 (3), and 3.4 (3).

(4) ⇒ (1). Assume that RF is an abstract local cohomology functor. We have to show that

F (M/F (M)) = 0 for any graded module M . It is enough to show that F (E/F (E)) = 0 for any

gr-injective module E. In fact, for any graded module M , taking the gr-injective hull Egr(M) of M , we

have F (M/F (M)) ⊂ F (Egr(M)/F (Egr(M))) by Lemma 1.1.

Note that the natural inclusion F ⊂ 1 of functors on Gr(R) induces a natural morphism φ : RF → 1

of functors on D
+(Gr(R)). Since (Im(RF ),Ker(RF )) is a stable t-structure on D

+(Gr(R)), it follows

from Theorem 1.2 that every gr-injective module E is embedded in a triangle

RF (E)
φ(E)
−−−→ E → N → RF (E)[1],

with RF (E) ∈ Im(RF ) and N ∈ Ker(RF ). Since E is a gr-injective module and since RF is the right

derived functor of a left-exact functor, RF (E) = F (E) is a submodule of E via the morphism φ(E).
Therefore, we have N ∼= E/F (E) in D

+(Gr(R)). In particular, H0(RF (E/F (E))) ∼= H0(RF (N)) =
0. Since F is a left exact functor, it is concluded that F (E/F (E)) = 0 as desired. This completes the

proof of Theorem 3.1. �
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Хорошо известно, что разложение инъективных модулей над нётеровыми кольцами является одним из наибо-

лее эстетичных и важных результатов в коммутативной алгебре. Наша цель — доказать аналогичные результа-

ты для градуированных нётеровых колец. В этой статье мы изучаем структурную теорему для gr-инъективных

модулей над gr-нётеровыми G-градуированными коммутативными кольцами, даем определение gr-бассовых

чисел и изучаем их свойства. Мы покажем, что каждый gr-инъективный модуль имеет неразложимое раз-

ложение. Пусть R — gr-нётерово градуированное кольцо, а M — gr-конечно порожденный R-модуль. Мы

дадим формулу для выражения чисел Басса с помощью функтора Ext. Мы определяем функтор сечения ΓV

с носителем в замкнутом по специализации подмножестве V из Specgr(R) и абстрактный локальный кого-

мологический функтор. В заключение мы покажем, что левый точный радикальный функтор F имеет вид ΓV

для замкнутого по специализации подмножества V .
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