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Introduction

Recently, considerable interest has been noted in rings and other algebraic structures equipped with
grading. This is explained by the fact that many important classes of rings, for example, polynomial rings,
matrix rings, group rings, admit a natural grading.

A natural and important question in the theory of graded rings is to find graded analogues of some
classical theorems. For example, C. Park in his work [17] proved Krull’s principal ideal theorem, the
Krull-Akizuki theorem and the Mori—Nagata theorem in the graded case. S. Paul Smith in his work [21]
proved some category equivalences involving the quotient category QGr(kQ) := Gr(kQ)/Fdim(kQ) of
graded £Q-modules modulo those that are the sum of their finite-dimensional submodules. J. Bell and
J. Zhang in their work [2] proved, for two connected graded algebras A and B that are finitely generated
in degree one, that if A is isomorphic to B as ungraded algebras, then they are also isomorphic to each
other as graded algebras. J. Chen and Y. Kim in their work [3] show that if a graded submodule of a
noetherian module cannot be written as a proper intersection of graded submodules, then it cannot be
written as a proper intersection of submodules at all. In [4] I. DellAmbrogio and G. Stevenson establish
an inclusion-preserving bijection between, on the one hand, the twist-closed localizing subcategories of the
derived category, and, on the other hand, subsets of the homogeneous spectrum of prime ideals of the ring.

It is well known that the decomposition of injective modules over noetherian rings is one of the most
aesthetic and important results in commutative algebra. Our aim is to prove similar results for graded
noetherian rings. This is important for us to understand the structure of the noetherian modules on the
graded rings.

We now give a brief outline of the paper.

In Section 1, we set notation and review some basics of graded commutative rings, torsion theories
and ¢-structures.

In Section 2, we give a definition of gr-Bass numbers and obtained the following important theorem:
Theorem 2.1 Let R be a gr-noetherian G-graded ring and M € gr(R). Then

,ulgr (]J, g, M) = dimﬁ(p)Eth(p) (H(p), M(p) (g))

In Section 3, we show that a left exact radical functor F' is of the form I'y, for a specialization-closed
subset V. This is a generalization of Yoshino and Yoshizawa’s theorem in the case of graded rings (see
also [23, Theorem 2.6]).
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Theorem 3.1 The following conditions are equivalent for a left exact preradical functor F on Gr(R).
(1) Fis a radical functor.
(2) F preserves injectivity.
(3) F is a section functor with support in a specialization-closed subset of Specd” (R).

(4) RF is an abstract local cohomology functor.

Symbols
G totally ordered abelian group
R (G-graded ring
Mod(R) category of R-modules

Gr(R) category of graded R-modules

gr(R)  category of gr-noetherian graded R-modules
A abelian category

C(A) category of .4-complexes

K(A)  homotopy category of chain complexes in A

D(A) derived category of A

For more information on graded rings, see [8,15-17,19,20].

§ 1. Preliminaries
§1.1. Graded commutative rings and graded modules

In this article we always assume that G is a totally ordered abelian group. For the definition of
G-graded commutative rings and modules see, for example, [15,16]. Let R be a (G-graded ring and
M = ®g4ecM, be a graded R-module, we let h(M) := Uge M, be the set of homogeneous elements. We
denote by Mod(R) the category of R-modules, and by Gr(R) the category of graded R-modules whose
objects are graded R-modules, and the morphisms are homomorphisms preserving grading:

Homgyr)(M,N) ={f € Homgr(M,N) : f(My) C Ny for all g € G}.

Obviously, Gr(R) is a Grothendieck category [16, Proposition 2.2].

Gr-noetherian module is a graded R-module M in which every sequence of graded submodules
Ny € Ny C -+ C N, C ... is stabilized. If R as a R-module is gr-noetherian, then we call R
gr-noetherian ring. If R is a gr-noetherian ring, then the category of gr-noetherian R-modules gr(R) is
an abelian category [16, Proposition 2.2].

A gr-multiplicative set is a subset S of a graded ring R such that the following two conditions hold:

(1) 0¢S5,1€ 8,5 Ch(R).
(2) Forall z and y in S, the product zy is in S.

Let M = & e M, be a graded R-module. The grading of the module M induces a grading on the
modulus of quotients S~'M over the gr-multiplicative system S:

(S~1M), = {T € S7IM|me My, se€SNRy, g= hzfl}.
S
A graded ring R is a gr-local ring if R has a unique graded maximal ideal.
Let R be a gr-noetherian G-graded commutative ring, and M a graded module over R. We say that

p € Specd"(R) is a gr-associated prime of M if p is the annihilator of some x € h(M). The set of
gr-associated primes of M is denoted by Ass% (M) or Ass?"(M).
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§ 1.2. Gr-injective modules over gr-noetherian rings
Definition 1.1. Let R be a G-graded ring.

(1) A graded R-module M is gr-injective if it is injective as an object of the category Gr(R).

(2) Let N be a graded submodule of M. N is said to be an gr-essential submodule of M if for every
gr-submodule H of M the equality H N N = 0 implies that H = 0.

(3) The gr-injective hull E9"(M) of a graded module M is both the smallest gr-injective module
containing it and the largest gr-essential extension of it.

(4) A graded module is gr-indecomposable if it is nonzero and cannot be written as a direct sum of two
nonzero graded submodules.

Proposition l.1. Ifp € Specd” (R), then Assg’"(%) = {p} and Assg’"(Egr(g)) = {p}.

Proof. pisa gr-associated prime of R/p because there is a monomorphism from R/p to itself. If
Q € Assgr(g), we must show that Q = p. Suppose that @) is the kernel of an epimorphism R — Rzx.
Then s € Q iff sx € p iff s € p (because p is prime).

Let q € Asng(EQT(%)), then q = Anng(z) and 0 # = € h(Eg’"(g)). By the definition of the gr-
injective hull, % is a gr-essential submodule of EW(%). There is an element r € h(R), and 0 # 7z € £,
obviously, » ¢ q. We have Ann(rz) = p D Ann(x) = q. For any p € p, we have prz = 0, so pr € g, but
r & q, hence p € q, that is, p = q. O

Theorem 1.1. Let R be a gr-noetherian G-graded commutative ring.
(1) For every family {Jx}xen of gr-injective modules, the direct sum @, J is also gr-injective.
(2) Every gr-injective module has an indecomposable decomposition.

(3) If 0 # E is a gr-indecomposable gr-injective module, then E = Egr(g(g)), where p € Spec?”(R)
and g € G.

(4) Let p,q € Specd”(R), g,h € G and let p # q, then Egr(g(g)) + Egr(g(h)).

Proof.

(1) See [10, Theorem 5.9].

(2) See [10, Theorem 5.9].

(3) Let p € Ass9"(E), there exist x € h(F) and g € G such that Rz = £(g). Hence F = E9"(Rz).
(4) This is Proposition 1.1. U

=|

§ 1.3. Torsion theories

Our main references for the torsion theories are [5, 12, 18].
A torsion theory in a Grothendieck category A is a couple (7, F) of strictly full additive subcategories
called the torsion class 7 and the torsion free class F such that the following conditions hold:

(1) Hom(T,F)=0.
(2) For all M € Obj(.A), there exists N C M, N € Obj(T) and M /N € Obj(F).

For every object M there exist the largest subobject t(M) C M which is in 7 and it is called the
torsion part of M.
t:Mw— t(M)

is an additive functor. A torsion theory is hereditary if 7 is closed under subobjects, or equivalently, ¢ is
left exact functor.

A radical functor, or more generally, a preradical functor, has its own long history in the theory of
categories and functors. See [7] or [13] for the case of module category. Let F, G : A — A be functors.
Recall that ' is said to be a subfunctor of G, denoted by F' C G, if F'(M) is a subobject of G(M) for all
M € A and if F(f) is a restriction of G(f) to F(M) for all f € Hom4(M, N).
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Definition 1.2. A functor F' : A — A is called a preradical functor if F is a subfunctor of 1.

Lemma 1.1 (see [23, Lemma 1.1]). Let F' : A — A be a preradical functor and assume that F is a
left exact functor on A. If N is a subobject of M, then the equality F(N) = N N F(M) holds.

Definition 1.3. A preradical functor F' is called a radical functor if F'(M/F(M)) = 0 for all
M € Obj(A).

If F: A— Ais a left exact radical functor, then there is a hereditary torsion theory (7p, Fr) by
setting

Tr={M e A|F(M)= M}, (LD)

Fr={M e A|F(M) = 0}. '

§1.4. t-structures

The notion of a t¢-structure arose in the work [1] of Beilinson, Bernstein, Deligne, and Gabber on
perverse sheaves.

Let D be a triangulated category. ¢-structure in D is a pair t = (U, W) of full subcategories, closed
under taking direct summands in D, which satisfy the following properties:

(t-S.1) Homp(U,W|[-1]) =0, forall U € Y and W € W
(t-S.2) U[l] c U, W[-1] Cc W;
(t-S.3) for each Y € D, there is a triangle A — Y — B — A[l] in D, where A € U and B € W[—1].

A t-structure t = (U,)V) in D is called a stable t-structure on D if ¢ and W are triangulated
subcategories.

Theorem 1.2 (see [14, Proposition 2.6]). Let D be a triangulated category and U a triangulated
subcategory of D. Then the following conditions are equivalent for U.

(1) There is a triangulated subcategory W of D such that (U, W) is a stable t-structure on D.
(2) The natural embedding functor i : U — D has a right adjoint p : D — U.

If this is the case, setting § =i 0 p: D — D,we have the equalities U = Im(6) and W = Ker(0). There
is an natural morphism ¢ : § — 1, where 1 is the identity functor on D. Every C' € D can be embedded
in a triangle of the form

5c) 29 ¢ = D = s(O)1).

§ 2. Gr-Bass numbers

Let R be a gr-noetherian G-graded ring. For each p € Spec?"(R), S = h(R) —p is a gr-multiplicative
system and R, := S ~IR is a gr-local ring. pR(p is the unique gr-maximal ideal of R(,). We define

_ Ry
R() = PRy

Proposition?2.l. Suppose that f : M — N is a monomorphism in Gr(R). Then N is an essential
extension of M if and only if for every p € Spec9”(R) the induced morphism

fo) + Homp, (), My)) = Hompy,, ((p): Niy))
is an isomorphism.

Proof. Since localization is exact and Homp,, (k). —) is left exact, f,) is always a monomor-
phism. Let S = h(R)—p. Since % is finitely presented, we have S~ Homp (£, M) = Homp,, (K(), M(y))

p?
and S~ Hompg($, N) = Homp,, (K@), Nip))-
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First, let IV be an essential extension of M and let 0 # f € S‘lHomR(%, N). We have 0 # f(1) €
N, so there is an element r € h(R) such that 0 # rf(1) = f(r) € M. It is obvious that r ¢ p, that is,
reS, so % € S_lHomR(%,M) and its image in S‘lHomR(g,N) is f, S0 f(p) is an isomorphism.

Now let f,) be an isomorphism for any p € Spec?”(R). Let z € h(N). There is a graded prime ideal
p € Ass9"(Rx) and an element r € h(R) such that y = rx and Anng(y) = p. We define a homomorphism
fe HomR(%,N) such that f(1) = y. There is a homomorphism h € HomR(%,M) and an element
s € S such that %(%) = {(%) = 4. There is an element u € S such that h(1) = usy = usrz € M, hence
N is an essential extension of M. O

Let M be a graded R-module. A gr-injective resolution is an exact sequence
. 0d, 1 d o d
FPP=0—-M-—-FE —FE —E —...,

where E' is a gr-injective module. If Ker(d') — E' is an essential extension, then we say that E*® is a
gr-minimal injective resolution.

Proposition 2.2. Let R be a gr-noetherian ring and M be an R-module with a gr-injective
resolution E*. Then E® is a gr-minimal injective resolution if and only if for all p € Spec?” (R) and all i,

the induced morphisms Homp, ()., Efp)) — Hompg,, (ﬂ(p),EE;Sl) are zero.

Proof. Let 7t = ker(d') = Im(d"~1). E®is gr-minimal if and only if E'is an essential extension
of Z*, if and only if the induced morphism Hompg,, (£ ). ZZ;J)) — Homp, (K@), Eép)) is an isomorphism
by Proposition 2.1. Since there are exact sequences 0 — Z' — E' — E'T', and Homp,, (K (), —)
is left exact, the latter condition holds if and only if the induced morphisms H omR@)(f@(p),Ezp)) —
HomR(p)(/@(p),E(igr)l) are 0. [J

Proposition 2.3. Let R be a gr-noetherian G-graded ring and S be a gr-multiplicative system.
If M is a gr-injective R-module, then S™'M is a gr-injective S R-module.

Proof. In the nongraded case this is a classical result (see [9, Proposition 2.8]). In the graded case,
it is possible to repeat this proof. O

Proposition24. Let R be a gr-noetherian G-graded ring and M be a graded R-module with a

gr-minimal injective resolution E°. Then for any p € Spec?" (R), E(°p) are gr-minimal injective resolutions

OfM(p).

Proof We know that E! ) are gr-injective R,)-module by Proposition 2.3. By Proposition 2.2 it is

(b .
only necessary to prove that Homp, (£ (q). (E(ip))(q)) — Hompg,, (K@) (EE$1)(q)) are 0 for all ¢ C p. We

know that (Eép))(q) = Eé 0’ hence E(‘p) are gr-minimal injective resolutions of M, by Proposition 2.2. [

Definition 2.1. (Gr-Bass numbers) Let R be a gr-noetherian G-graded ring and let M € gr(R)
have a gr-minimal injective resolution £°. By Theorem 1.1, we have

. R gr
EZ — Egr - /»‘LZ' (p7g7M)
D PErio
peSpecdT(R) geG
" (p, g, M) are called gr-Bass numbers.
Proposition2.5. Let R be a gr-noetherian G-graded ring and M € gr(R). Then, for any 1,

M?T(%g, M) = M?T(P(p),ga M(p))-

Proof. Take a gr-minimal injective resolution £°. By Proposition 2.4, E(p) is the gr-minimal

injective resolution of M. Since E' = Dyespecs(r) Dyeal Elg%’"(%)(g)]uf"" (P,9:M) we make localization
and get the result. U
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Theorem2.1. Let R be a gr-noetherian G-graded ring and M € gr(R). Then

:u'zgr (pa g, M) = dimm(p)Ewt%{(p) ("i(p)7 M(p) (g))

Proof. By Proposition 2.5, it suffices to consider the case when (R, m, k) is a gr-noetherian gr-
local ring and p = m. Let E*® be a minimal gr-injective resolution of M. Then ExtGr( R)(n, M) is the

ith cohomology of the complex Homg,(g)(k, £*). By the minimality of the resolution all maps in this
complex are zero, so that EmtiGr( (8, M) = Homg,(r) (K, E?). To finish the proof it suffices to show

that
0 (i
HomGr(R)(“,E%T(E)) - {n ((zszppj;l))

p
If p = m, then, by Proposition 2.1, Homgy,(r)(k, E} (k) = Homge(r) (K, k) = K.
If p # m, then there is a homogeneous element = of m not in p. Let f € Homg,(r)(k, %), then
0 = f(x) = zf(1), but x in % is not a zero divisor, so f(1) = 0, that is, Homgy(g)(k, %) = 0. By
Proposition 2.1, Homg,(g) (%, Eg(%)) Homgy (g (K, —) =0. O

§ 3. Local cohomology
Definition3.1. Let R be a gr-noetherian G-graded ring. Let M € Gr(R).

(1) The small gr-support (following [6]) of M is
supp™ (M) = {p € Spec (R)| Tors' ™ (M, k) # 0}.
(2) The (usual) gr-support of M is
Supp? (M) = {p € Spec’ (R) | My # 0}.

Remark 3.1. Note that suppd” (M) C Supp” (M) and the equality holds if M € gr(R) (see,
e.g., [6, Lemma 2.6]).

Definition 3.2. Let R be a gr-noetherian G-graded ring. Let M € Gr(R).

(1) For any subset V' C Spec?"(R) we say that V' is a specialization-closed subset if for any p € V' and
any q € Spec?” (R) we have q € V whenever p C q.

(2) Let V be a specialization-closed subset of Spec?”(R). We can define the section functor I'y, with
support in V' as

I'y(M) = U{N C M| Supp? (N) CcV}= U{N C M |supp?"(N) C V}
for all M € Gr(R).

Definition 3.3. We denote C = D" (Gr(R)) in this definition. Let § : C — C be a triangle
functor. We say that § is an abstract local cohomology functor if the following conditions are satisfied.

(1) The natural embedding functor i : Im(d) — C has a right adjoint p : C — I'm(d) and 6 = i o p.

(2) The t-structure (Im(d), Ker(d)) divides indecomposable injective objects, by which we mean that
each indecomposable injective object belongs to either Im(d) or Ker(d).

Theorem 3.1. The following conditions are equivalent for a left exact preradical functor F on
Gr(R).

(1) Fis a radical functor.

(2) F preserves injectivity.
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(3) F is a section functor with support in a specialization-closed subset of Spec” (R).
(4) RF is an abstract local cohomology functor.
The proof of Theorem 3.1 consists of a succession of relatively short lemmas.

Lemma 3.1. Let R be a gr-noetherian G-graded ring, and V' be a specialization-closed subset of
Specd” (R).

(1) If N is a graded submodule of M, then the equality Ty (N) = N N Ty (M) holds.
(2) T'v(M/T'yv(M)) = 0 for every M € Gr(R).
(3) T'v is a left exact radical functor.
Proof (1)If H € Gr(R), then
HCTy(N)< HCNand Supp? (H) CV < HCTI'y(M)NN.
(2) If H € Gr(R), then

HcTy(M/Ty(M)) < HC M/Ty(M) and Supp? (H) CV = H = 0.

(3)Let0 - K Ly M 2 N be an exact sequence in Gr(R). By (1) we have I'y (K) = K N T'y (M),
hence 0 — I'y (K) — I'y(M) is an exact sequence. Let H € Gr(R), we have

HC Kerl'y(g) & HC KergNI'y(M) =ImfNI'y(M) < H C ImI'y(f),
hence 0 — I'y (K) — 'y (M) — T'y(N) is an exact sequence. O

Lemma 3.2. Let R be a gr-noetherian G-graded ring. Let F' : Gr(R) — Gr(R) be a left exact
radical functor.

(1) Let p € Specd”(R), then F(Ef{(%)) is identical to either Ef{(%) or 0.

(2) F preserves injectivity.

Proof. (1) Since F is a left exact radical functor, there is a hereditary torsion theory (7p, Fr),
which is defined in (1.1). Hence there is an exact sequence

R
O—>N—>E§’{(E)—>H—>O

with N € Tp and H € Fp. If N = 0, then EY ($) = H € Fp, therefore F(E (§)) = 0. If
N # 0, since Assg”(Eg(}—'f)) = {p}, we have Ass9"(N) = {p}, hence R/p C N. Since Tr is a
localizing subcategory and N € T, we have R/p € Tp. By Proposition 1.1, Ef’{(%) € Tp. Therefore,
F(EY(B)) = B (B).
(2) For an injective J € Gr(R), by Theorem 1.1 it has an indecomposable decomposition J =
Dicr B (8)(g1). We set i = Dyez, BY (£)(9) and Jo = @z, BY (£)(g:). where
. R R
L ={i e I| F(ER () = ER ()},
pi Pi
. gr R
I, = {i € T| F(EY, (p_)) = 0}.
(2
By (1) we have J = J; @& Jo. Since Tp is closed under taking direct sums and Fp is closed under
taking direct products and subsheaves, we have J; € Tg, and Jo € Fr. Therefore, we have an equality
F(J)=F(J;)@® F(J2) = Ji, which is a gr-injective module. O
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Proposition3.1. Let R be a gr-noetherian G-graded ring. Let F' : Gr(R) — Gr(R) be a left
exact preradical functor which preserves injectivity. Then

(1) F(Eg(%)) is identical to either Eg(%) or 0.

(2) F(%) is identical to either % or 0.

Proof. (1) Since F(Eg(}—;)) is a gr-injective submodule of a gr-indecomposable injective module
Ef{(%), it is a direct summand of Efg(%). Thus the indecomposability of Ef{(%) forces F (Ef{(%)) is
either E;?{(%) or 0.

(2) It follows from Lemma 1.1 that F(%) = % N F(Elg{(%)), therefore F(%) is either % or 0 by (1). O

For a left exact preradical functor ' which preserves injectivity, we define a subset Vg of Spec?” (R)
as follows:

Vp = {p € Spec?"(R) : F<§) - ?} '

Note from the proof of Proposition 3.1 that Vx is the same as the set

{p e Spect (R): F(EY(H) - Ef{(f)} |

Proposition3.2. Let F be a left exact preradical functor which preserves injectivity. Then Vp is
a specialization-closed subset.

Proof. Letp € Vp and q D p. There is an exact sequence

R R
0—-K——— —.
b q
Since F' is a left exact preradical functor, there is an exact sequence
R R

0— F(K)— F(E) — F(H).

We have F(%) = % and FI(K) = KﬂF(%) = K by Lemma 1.1, therefore F(%) = %, hence q € Vp. O

Lemma 3.3. Let F be a left exact preradical functor which preserves injectivity. Then the equality
F =T, holds as subfunctors of 1, where V is a specialization-closed subset of Spec9” (R) defined in
Proposition 3.2.

Proof. First of all, we consider the case that M is a finite direct sum of indecomposabe injective
objects B, Eg(%)(gi) in Gr(R). Then we have an equality

PO = E%%?)(gi) — T, (M)
P VR v

by Proposition 3.1.

Next, we consider the case that M € gr(R). Since the gr-injective hull E9" (M) of M is a finite direct
sum of indecomposable gr-injective modules, we have already shown that F'(E9"(M)) = 'y, (E9"(M)).
Thus, using Lemma 1.1, we have

F(M) = M0 F(EY (M) = M ATy (B (M) = Dy, (M).

Finally, we show the claimed equality for an object M in Gr(R) without any assumption. We should
notice that a graded submodule N C M belongs to F'(M) if and only if the equality F'(N) = N holds.
In fact, this equivalence is easily observed from the equality F(N) = N N F(M) by Lemma 1.1. This
equivalence is true for the section functor I'y, as well. So N C M belongs to I'y, (M) if and only
if 'y, (N) = N. Therefore, we see that N C F(M) if and only if N C I'y, (M), and the proof is
completed. O
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Lemma3.4. Let M* € D(Gr(R)) and let V be a specialization-closed subset of Specd” (R). Then

(1) M?® belongs to Im(RI'y) if and only if M*® is quasi-isomorphic to a gr-injective complex whose
components are direct sums of Elg{(%)(g) withp € V.

(2) M?* belongs to Ker(RI'y) if and only if M*® is quasi-isomorphic to a gr-injective complex whose
components are direct sums ofEfg(%)(g) with p € Specd"(R) — V.

(3) RF is an abstract local cohomology functor.

Proof By [22, Theorem 5.4] or [11, Proposition B.2], every complex of graded R-module has a
K-injective resolution. For any gr-injective complex J* € K(Z), RI'y(J®*) = I'y(J*) is the subcom-
plex of J* consisting of gr-injective modules supported in V. Hence every object of Im(RI'y) (resp.
Ker(RI'y)) is a gr-injective complex whose components are direct sums of EQT(R)( ) with p € V (resp.
p € Spec? (R) — V). In particular, if p € V (resp. p € Spec?"(R) — V), then Egr( )(g) € Im(RI'y)
(resp. B (£ . )(9) € Ker(RI'y)). Since Homgy(r) (Egr( )(9)), Egr( )(h) = 0 for p € V and
q € Spec?”(R)—V, we can see that Homy 1) (J7, J3) = HomK( )(Jl,FV(Jz)) for any J; € Im(RI'y)
and J3 € K(Z). Hence it follows from the above equivalence that RI'y is a right adjoint of the natural
embedding i : Im(RI'y) — D(Gr(R)). O

Proof of Theorem 3.1. (1) = (2), (2) = (3), (3) = (1), and (3) = (4) have already been
proved, respectively, in Lemmas 3.2 (2), 3.3, 3.1(3), and 3.4 (3).

(4) = (1). Assume that RF' is an abstract local cohomology functor. We have to show that
F(M/F(M)) = 0 for any graded module M. It is enough to show that F(E/F(E)) = 0 for any
gr-injective module E. In fact, for any graded module M, taking the gr-injective hull E9" (M) of M, we
have F(M/F(M)) C F(E"(M)/F(ES (M))) by Lemma 1.1.

Note that the natural inclusion F' C 1 of functors on Gr(R) induces a natural morphism ¢ : RF — 1
of functors on DT (Gr(R)). Since (Im(RF), Ker(RF)) is a stable ¢-structure on DT (Gr(R)), it follows
from Theorem 1.2 that every gr-injective module E is embedded in a triangle

RE b (E)
(E) — E — N — RF(E)[1],
with RF(E) € Im(RF) and N € Ker(RF). Since F is a gr-injective module and since RF' is the right
derived functor of a left-exact functor, RF(E) = F(E) is a submodule of E via the morphism ¢(E).
Therefore, we have N = E/F(E) in D*(Gr(R)). In particular, H*(RF(E/F(E))) = H(RF(N)) =
0. Since F is a left exact functor, it is concluded that F/(E/F(E)) = 0 as desired. This completes the
proof of Theorem 3.1. 0
Funding. This work was supported by the Chinese Scholarship Council.
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Xopo1mIo U3BECTHO, YTO Pa3IoKEHHE HHBEKTUBHBIX MOYJIEH HaJ HETEPOBBIMH KOJIBI[AMH SBJISIETCS] OIHUM U3 Hanbo-
Jiee ICTETUYHBIX U BXKHBIX PE3yJIbTaTOB B KOMMYTaTUBHOM anreOpe. Hama rienb — 10ka3aTh aHAaJIOTHYHbBIE pe3yJIbTa-
ThI JJIs1 TPayUPOBaHHBIX HETEPOBLIX KoJell. B 3Toli cTaTbe Mbl H3ydaeM CTPYKTYPHYIO TEOPEMY AN §7-UHBEKTUBHBIX
MojyJel Hall gr-HETepoBbIMH (G-TpajlyMPOBAHHBIME KOMMYTATHBHBIMHU KOJIBIIAMH, JIaeM OIIpE/eIeHUe gr-0accoBbIX
9Hpcel U M3ydaeM MX CBOMCTBA. MBI MOKa)XeM, YTO KaKIBIH ¢r-MHBEKTHBHBIH MOAYIh MMEET HEepa3IoKHMOe pas-
noxenue. Ilycts R — gr-HETEPOBO IpajyHMpOBaHHOE KOJBLO, & M — gr-KOHEYHO MOPOXKAECHHBIN R-MOxynb. Mbl
JmamuM GopMyity JUTd BeIpaxkeHHs: uucen bacca ¢ momonipio gynkropa Ext. Mel onpeznensem ¢yHkrop cedenus ['y
C HOCHTEJIEM B 3aMKHYTOM IO CIEIUaIn3aluy moaMHokecTBe V' u3 Spec?” (R) u aGCTpakTHBIN JIOKAJIbHbINA KOTo-
MOJIOTHUYECKUI (yHKTOp. B 3aKiouenne Mbl MOKa)keM, 9TO JIEBBII TOUHBIN paguKaibHBIN QyHKTOp F' mmeet Bux 'y
JUTS 3aMKHYTOTO TIO CIICIMAIM3ayi MOJMHOKeCTBa V.
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