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Introduction

The work of R. Isaacs [1] laid a foundation for the theory of two-player pursuit-evasion
differential games, which has grown to be a profound and insightful theory in which various
approaches to analysis of conflict situations [2—-8] are proposed. A natural generalization is the
situation of conflict interaction of a group of pursuers and a group of evaders, in which the goal of
the group of pursuers is to catch a given number of evaders and the goal of the group of evaders
is the opposite one.

Reference [9] addressed the problem of simple pursuit of a group of evaders by a group of
pursuers with equal opportunities for all participants. The goal of the pursuers was to catch
all evaders, and the goal of the evaders was the opposite one. Sufficient conditions for the
solvability of local and global evasion problems were obtained and the upper and lower estimates
of the minimal number of evaders evading a given number of pursuers from any initial positions
were made. An improved variant of the lower estimate was presented in [10]. A generalization
of the results of [9] to linear differential games with a constant matrix and a nonstationary matrix
was provided in [11] and [12], respectively. In [13] a proof was given of the existence of a price
of the game in nonlinear differential games with many participants in a finite time interval and
with payoff functions of special form.

Sufficient conditions for the capture of all evaders by a group of pursuers in the nonstationary
differential game of simple pursuit in a convex compact set with integral restrictions on the
controls of the players were obtained in [14]. In [15], the problem of a group of evaders avoiding
a group of pursuers was considered under the assumption that the motion of all participants is
simple and that integral restrictions are imposed on the control. It is shown that, if the total
energy of the pursuers is smaller than or equal to the total energy of the evaders, an evasion from
an encounter occurs.

Reference [16] is concerned with the differential reach-avoid game between two opposing
teams in a convex domain consisting of a target domain and a playing zone. The evasion team,
which is initially located in the playing zone, strives to send as many team members as possible
to the target region, while the pursuit team whose members are initially distributed both over the
playing region and over the target region, strives to prevent that by capturing the evaders. The
problem under investigation is that of assigning specific pursuers to chase the evaders in such a
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way that the number of evaders that can be caught before they reach safely the target region is
maximized.

Reference [17] treats the problem of pursuit of a group of evaders by a group of pursuers in
a probabilistic setting. For each evader, a probability matrix is introduced which estimates the
probability of a specific evader being in a particular position. These probabilities are used to
construct a forecast of the location of the evaders. The pursuers coordinate their actions and try
to decrease the probability matrix.

Reference [18] considers the conflict interaction of a group of pursuers and a group of evaders.
It is shown that, if in this conflict the evasion of at least one evader occurs in an infinite time
interval, then, with “weak” pursuers being added, the evasion from an encounter will occur in
any finite time interval.

Reference [19] is concerned with the dynamical game for two teams: a lady and body-guards
against gangsters. The goal of the gangsters is to capture the lady, and the goal of the lady and
the body-guards is to prevent that from happening. The body-guards try to intercept the gangsters
before they come into immediate proximity to the lady. An approach to solution for a linear
system and a quadratic criterion is demonstrated.

Reference [20] addresses the problem of pursuit of several evaders by several pursuers in a
convex compact set on a plane. Using a Voronoi partitioning, conditions for the capture of all
evaders are obtained.

Reference [21] develops a strategy for cooperation of several unmanned surface ships for
pursuing evaders in the presence of a dynamical obstacle ship. To solve the pursuit problem, the
pursuers are divided into a pursuit group and an ambush group. The pursuit group drives the
evaders into the ambush region and, together with the ambush group, completes encircling the
evaders.

Reference [22] is concerned with the differential game of pursuit of a group of evaders by a
group of pursuers in three-dimensional space under dynamical perturbations of the environment.
It proposes a method for distributing the pursuers into groups each of which catches their own
evader. Conditions for solvability of the pursuit problem are given in terms of sets of attainability
of the participants.

References [23-25] examine the problem of the capture of a given number of evaders in
recurrent differential games, games with fractional derivatives and games on a given time scale
under the condition that the evaders use program strategies and that each pursuer catches no more
than one evader. Sufficient, and in some cases necessary, conditions for solvability of the pursuit
problem are obtained.

Sufficient conditions for the capture of a given number of evaders by a group of pursuers are
obtained in [26], implying that each evader is to be caught by a given number of pursuers.

In this paper, we address the problem of conflict interaction of a group of pursuers and a group
of evaders in a differential game on a given time scale with simple motion and equal opportunities
for all participants. We obtain sufficient conditions for solvability of the local and global evasion
problems, and the upper and lower estimates for the minimal number of evaders evading a given
number of pursuers from any initial positions.

§ 1. Auxiliary definitions and facts
In this section, we recall some basic facts from the theory of time scales. All results presented

below can be found, for example, in [27,28].

Definition 1.1. A nonempty closed subset T C R! such that supt = +oc is called a
teT
time scale.
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Definition 1.2. Let T be a time scale. A function o: T — R! of the form
o(t)=inf{s e T|s>t}
is called a translation function.

Definition 1.3. A function f: T — R! is said to be A-differentiable at a point t € T
if there exists a number v € R! such that for any £ > 0 there exists a neighborhood W of the
point ¢ such that the inequality

[f(e(t)) = f(s) =v(a(t) = s)[ <elo(t) — 5]

holds for all s € TNW. In this case, the number + is said to be the A-derivative of the function f
at the point ¢. The A-derivative of the function f at the point ¢ will be denoted as f2(t) = 7.

Definition 1.4. A function f: T — R"™, f(t) = (fi(?),..., fa(t)) is said to be A-diffe-
rentiable at a point t € T if all functions f1, ..., f,, are A-differentiable at the point ¢.

Let T be a time scale, £ C T. Denote R(F) = {t € E | o(t) > t}. Then the set R(F) is no
more than countable.

Definition 1.5. A set &£ C T is said to be A-measurable if the set

E=EU ] (to(t)
)

teR(E
is measurable in the sense of Lebesgue.

Definition 1.6. A function f: T — R! is said to be A-measurable on the A-measurable
set F if the function f of the form

- ) flt), teE,
1) = {f(t@-), t € (ti,o(ti)), t € R(E),

is measurable on the set E.

Definition 1.7. A function f: E — R!, E C T is called to be A-integrable on the
A-measurable set F if the function f is integrable in the sense of Lebesgue on the set . If f is

A-integrable on the set £, then we define / f(s)As, assuming
E
[ roas= [ an
E E

§ 2. Formulation of the problem

where p is the Lebesgue measure.

Suppose we are given a time scale T, ¢, € T.
In the space R* (k > 2) we consider a differential game involving n + m players: n pur-

suers Py, ..., P, and m evaders F, ..., E,. The motion of the players is governed by the laws
o =i, mi(te) =), w eV, (2.1)
yjA = v, yilto) =), v eV, (2.2)
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where z;, y;, 20, ¥, ui, v; € R, i e I ={1,...,n},j € J={1,....m}, V = {v € R":
Jv]| < 1}. Assume that 2 # ) foralli € I,j € J.

The goal of the group of pursuers is to catch all evaders. The goal of the group of evaders is
to prevent this, 1. e., to allow at least one of the evaders to evade an encounter.

Let 2% = (29, ...,2% ¢49,...,4%). Denote this game by I'(n,m, 2°). Let o be a partitioning
of the interval [¢y, +00) that has no accumulation endpoints. Let o = {tg, t1,...}, with ¢, € T for
all [. Denote Ty = [ts, ts41) N'T, T® = [to, ts) N'T, where {¢,} are the elements of partitioning o.

Definition2.1. A piecewise-program strategy V; of an evader I;, which corresponds to
the partitioning o, is a family of maps b;, [=0,1,...,j € J, that associate to the quantities

(tl,:ci(tl),i € 1,ys(t1), s € J,minmin ||z:(t) — ys(t)H) 2.3)

teT!
a A-measurable function v}(¢) defined for ¢ € T, and such that v!(t) € V for all ¢ € T,.

Definition 2.2. A piecewise-program counterstrategy U, of a pursuer P;, which corre-
sponds to the partitioning o, is a family of maps ¢, [ = 0,1,..., j € J, that associate to the
quantities (2.3) and to controls v;-(t), j € J,t € Ty, a A-measurable function ul(¢) defined for
t € T, and such that ul(t) € V for all ¢ € T,.

Definition 2.3. In the game ['(n,m, 2°) an evasion from an encounter occurs if there

exist a partitioning o and piecewise—program strategies Vi, ..., V,, of evaders Ei,..., E,, such
that for any trajectories 1 (t), ..., z,(t) of pursuers Py, ..., P, there exists a number p € J such
that

yp(t) #ai(t) Viel, teT,

where y,(¢) is the trajectory of the evader £, that takes place in this situation.

Definition 2.4. A capture occurs in the game T'(n, m, 2°) if there exists T > t5, T € T
such that for any partitioning o and any strategies Vi, ..., V,, of evaders F\, ..., E,, there exist
piecewise—program counterstrategies Uy, . .., U, of pursuers P, ..., P, corresponding to the par-
titioning o such that there exist time instants 7, ..., 7,, € [to, T)NT and numbers sq,..., s, € [
for which the following equations hold:

yj(Tj) = ij(Tj)v ] € J,

where x,,(t),s; € I, y;(t),j € J, are the trajectories of players P, ,s; € I, Ej,j € J, that take
place in this situation.

§ 3. The local evasion problem

In this section, we present some sufficient conditions for an evasion from an encounter in the
game I'(n,m, 2°).
For a hyperplane H, we denote by H+ and H~ closed half-spaces defined by this hyperplane.

Lemma 3.1. Suppose there exists a hyperplane H such that
a)x) € H™ foralli€ I;

b))y e HT.

Then an evasion from an encounter occurs in the game T'(n,m, z°).

Proof. Let g be the unit vector of the normal of the hyperplane H which is directed to H T,
and let u;(t), ¢ € I, be arbitrary controls of the pursuers. Define the control of the evader Ej,
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assuming v (t) = ¢ for all ¢ € T. Define the controls of the other evaders arbitrarily. From the
systems (2.1) and (2.2), we obtain

t t
() =0+ K(t)g, ailt) =l + / w(s)ds, where K(t) = / As.
to to
Define the functions .
1
w;(t) = W 0 u;(s)As.

) Ji
Then ||4;(t)|| < 1 for all ¢t € T. Next, we have (20 = 29 — /9),
lz:(t) = ()] = |12 — K(t)g + @) K@) = ||2] — K(t)all — K(t) =
= VI = 2K(1)(20,9) + K2(1) — K(t) > 0,

since (29, ¢) < 0 for all + € I. This proves the lemma. O

Corollary3.l. Let H(t) = H+(t—to)q. Then for any controls u;(t), i € I, of pursuers P,
i € I, and for all t € T the inclusion x;(t) € H™(t) holds, where H™(t) is a closed half-space
defined by the hyperplane H (t) such that H- C H(t).

Proof. Indeed, for all £ € T and all ©« € I the following inequality holds:

We note that y(t) € H(t) for all ¢ € T. This proves the corollary. O

Lemma 3.2. Suppose there exist hyperplanes H,, Hy and a number | € I such that

a) H1||H2, H2+ - H+,'

b)x) € Hy, 29 € Hy foralli €I, i #1;

) yi € Hy, yy € Ho;

d) the projections of all points 2%, i € I, 4, y3 onto the hyperplane H, are pairwise different.
Then an evasion from an encounter occurs in the game T'(n, m, 2°).

Proof. Letqbe the unit vector of the normal of the hyperplane H; directed to H;". Suppose
that wy (t) = 49 + (t — to)q, wo(t) = v — (t — t9)q, di(t) is the distance from the point w (t) to
the hyperplane H;, ds(t) is the distance from the point ws () to the hyperplane H;. We note that
dy(tg) = 0, dy(to) > 0, d; is an increasing function, and d» is a decreasing function.

Two cases are possible.

1. There exists 7 € T for which d;(7) = d2(7). Then we define the controls of evaders F;
and F, as follows. Assume that v;(t) = ¢ for all t € T.

—q, le [t()a T] N Ta
Us(t) =
q, te(r,+o00)NT.

Let us define the controls of the other evaders arbitrarily. We prove that an evasion from an
encounter occurs in the game I'(n,m, 2°). It follows from Lemma 3.1 that x;(t) # y(t) for all
i # 1, t € T. In addition, by virtue of Lemma 3.1 and Corollary 3.1, x;(¢) # y1(t), x;(t) # ya(t)
for all t € T7. It follows from Corollary 3.1 that z;(¢) # y»(t) for all £ € T, i # [. We show that
on the set (7, +00) N T the pursuer P, catches no more than one of the evaders £ and E,. For
all t > 7 we have y;(t), y2(t) € H1(t) = H + (t — ty)q. Therefore, if a capture of E;(FE,) by the
pursuer P, occurs at the time instant 7y, then, at the time instant 7y, the conditions of Lemma 3.1
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will be satisfied for the evader Ey(FE;). Thus, we have proved that an evasion from an encounter
occurs in the game I'(n, m, 2°).

2. For all t € T the following inequality holds: dy(t) # da(t). Then there exist 7,7 € T,
71 < T for which (11, 72) N'T = 0, di1(11) < da(71), d1(72) > da(72). Let us define the controls
of the evaders F; and E, as follows. Assume that v (¢) = ¢ for all ¢ € T.

If di(15) > da(71), then we assume

—q, t e [to,Tl) N T,
d —d
Ug(t) — Q( 1(7-2) 2(7—1>)’ t:’Tl,
T2 —T1
q, t € [1o, +00) NT.
If dy(71) > dy(72), then we assume
—q, t - [to, 7'1) N T,
—q(d —d
'UQ(t) — (]( 2(7_1) 1(7_2))’ t:7_1’
To — T
q, t € [r2,4+00)NT.

Let us define the controls of the other evaders arbitrarily. We note that, if dy(73) > da(71), then

d1(7'2) — d2(7'1) < d1(7'2) - dl(ﬁ)

T2 —T1 T2 —T1
Similarly, if ds(71) > d;(72), then
0< da(71) — di(72) < dy(11) — do(72) _ 1

~
T —T1 To —T1

Therefore, the function vy(-) satisfies the condition |[ve(t)|| < 1 forall t € T. We prove that in the
game I'(n, m, z°) an evasion occurs in this case as well. By virtue of Corollary 3.1, pursuers B,
1 € I, 1 # [, catch none of the evaders £ and E5. On the set T™, the pursuer P, catches none of
the evaders E; and Fs. If the pursuer P, performs a capture of one of the evaders £ and FE at
the time instant 7 > 7, then at the time instant 7 the pursuer P, will be on the hyperplane H ()
and hence, by virtue of Lemma 3.1, the pursuer P, will not be able to perform a capture of the
second evader. Thus, an evasion from an encounter occurs in the game I'(n, m, z°). This proves
the lemma.

Corollary 3.2. Suppose that in the game T'(n, m, 2°) there exist hyperplanes H,, Hy and
sets 1o C I, Jy C J such that

a) H,||H,, Hy C H;

b) |Jo| = |Io| + 1, where |J| denotes the number of elements of the set J;

o2 e Hy, ie€ly 20 € Hy, i¢ I

dyy) € Hi N Hy, j€Jy;

e) the projections of all points x?, i € I, y;-), j € Jo, onto the hyperplane H, are pairwise
different.

Then an evasion from an encounter occurs in the game T'(n,m, 2°).

Proof. Assume that J, = {1,...,l}. Let ¢ be the unit vector of the normal of the
hyperplane H; which is directed to H; . Let ¢! be one of the points 7, j € Jo, that is nearest
to Hy. Suppose that wy () = y{ + (t —to)q, w;(t) =y — (t—to)q, j € Jo, j # 1, and let d;(t) be
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the distance from the point w;(¢) to the hyperplane H;. Define the control v; of the evader Ej,
assuming vy (t) = ¢ for all ¢ € T. Define the controls of evaders £}, j € Jy, j # 1, as follows.
1. If there exists a time instant 7; € T for which d;(7;) = d;(7;), then we assume

—d, te [t077—'] N Tu
v;(t) = !
q, t € (r5,400)NT.

2. Suppose that the inequality d;(t) # d;(¢) holds for all ¢ € T. Then there exist 7y, 7o, € T,
T1j < T2j, for which (7'1]', 7'2]') NT = (Z), d1<7'1j> < dj(le), dl(TQj) > dj(T2j).
Then, if d; (TQj) > dj(le), Wwe assume

—q, t € [to, ;) NT,
d N — di (T
vj(t) _ q( 1(723) ](TU))’ t =1,
sz — le
q, t e [7'2]‘, +OO) N T
If dj(11;) > dq(72;), then we assume
—q, t € [to, ;) NT,
—aldi(T:) — di(Tos
Uj(t): CJ( J( 1]) 1( 23))’ t =1,
7'2]‘ — 7'1]‘
4, t € [y, +00) NT.

Define the controls of the other evaders, E; and j ¢ .Jy, in an arbitrary way. By virtue of
Lemma 3.2, the function v;(-) satisfies the condition ||v;(¢)|| < 1 for all ¢ € T. By virtue of
Lemma 3.2, pursuers P;, j ¢ I, catch none of the evaders E;, j € Jy. Each of the pursuers P},
J € Iy, can catch no more than one of the evaders F;, j € Jy. Therefore, by virtue of condition b)
of the corollary, at least one of the evaders F;, j € Jy, will avoid a capture. Consequently, an
evasion from an encounter occurs in the game I'(n, m, 2°). This proves the corollary.

Remark 3.1. The strategies of the evaders constructed in proving Corollary 3.2, which guarantee
an evasion from an encounter, possess the following property. Let H be a hyperplane that is parallel to the
hyperplane H; and passes through point , where 3! is one of the points y]Q, J € Jo, that is nearest to Hy,
and let H(t) = H + (t — to)q. Then the evader E; is on the hyperplane H (t) at each time instant ¢ € T.
The motion of each of the other evaders F;, j € Jo, j # 1, consists of two stages. In the first stage, each
of evaders E;, j # 1, moves along the normal —g to the hyperplane H so as to be on the hyperplane H ()
at some time instant 7. In the second stage, evader E;, j € Jy, 7 # 1, moves along the normal ¢ to the
hyperplane H and is thus located on the hyperplane H (t) for all ¢t > 7.

§ 4. The global evasion problem

Theorem 4.1. For any natural number p and any natural number m > p - 2P 4+ 2, an
evasion from an encounter occurs in the game T'(2P + 1,m, 2°).

Proof Letn =22 +1,1 ={1,....,n}, J = {1,...,m}, 29,...,2° be the initial po-
sitions of the pursuers and let 3?,...,¢y% be the initial positions of the evaders. Assume
that all points 9,...,2% ¢?,...,y° are pairwise different. Let ¢ be a unit vector such that
(¢, — %) # 0 for all a # 3, (¢, 2} —yj) # 0 for all 4, j, and (q,y; — y?) # 0 for all r # s.
Suppose that Hy, ..., H, are hyperplanes with the normal ¢ for which 2? € H; for all i € I,
and H; , H;" are closed half-spaces defined by the hyperplane H;,i € I, with H;" C H; | for all
i=1,...,n— 1. Assume that ¢ is directed to H; .
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If at least one of the points y? belongs to H," U H, then, by virtue of Lemma 3.1, an evasion
from an encounter occurs in the game I'(n,m, 2°). Further, let 4 € H; N H, for all j. The
theorem will be proved by the method of mathematical induction with respect to p.

1. p = 1. Define the sets .J; = {j | y§ € Hy N Hy'}, J, = {j | y) € H N Hy }. Construct
auxiliary controls v;(t) for evaders E;, j € J. For the group of evaders E;, j € Ji, U,(t)
are controls constructed in accordance with Corollary 3.2 with respect to the hyperplane H3 and
the normal vector ¢ directed to Hy. For the group of evaders E;, j € Jo, ,(t) are controls
constructed in accordance with Corollary 3.2 with respect to the hyperplane H; and the normal
vector —q directed to H; .

Suppose that y3 is one of the points 32, j € .Ji, that is nearest to the hyperplane Hs, and
H, is a hyperplane that is parallel to H3 and passes through y°. Next, suppose that yg is one
of the points y?, J € J,, that is nearest to the hyperplane H;; let Hz be a hyperplane that is
parallel to [ and passes through y3; let Ho(t) = Ho + (t —to)q, Ha(t) = Hp — (t —to)g; let 7y
be the first time instant when all evaders E;, j € Jj, reach the hyperplane H,(7;) when using
controls v;(t), j € Ji; let 7 be the first time instant when all evaders E;, j € .J,, reach the
hyperplane Hg(m;) when using controls 7;(t), j € Jo; let 7 = max{7, 72 }; d,(t) be the distance
from the point w,(t) = ya(7) + (¢t — 7)q to the hyperplane H,(7); let ds(t) be the distance from
the point ws(t) = ys(7) — (t — 7)g to the hyperplane H,(7). Note that 7 € T, d,(7) = 0,
dg(T) > 0. Two cases are possible.

1.1. There exists a time instant 7, € T for which d,(7y) = dg(7p). We define the controls of
evaders £}, j € J, as follows: v,(t) = g forall t € T, and v;(¢t) = 7,(t) forall t € T, j € Jy,
J# o

For j € J,, we assume

U(t) _ ﬁj(t), t e [to,To] N T,
’ q, te (T(]u _'_OO) NT.

1.2. Forall ¢t € T, ¢t > 7, the inequality d,, () # ds(t) holds. Then there exist time instants 7',
e T, 7 < 7' < 72 such that d,(7') < ds(7'), do(7%) > dg(7%). Define the controls of
evaders I, j € J, as follows.

If j € J;, then we assume v;(t) = v,(¢) for all t € T. If d,(7?) > ds(7') and j € Js, then
we assume

7;(t), t € lto, 7 NT,
2y 1
v;(t) = Q(da(Tz) d16<7— ))’ t=71!
T — T
q, te[r?, +o0)NT.

If dg(7') > do(7?) and j € Jo, then we assume

7;(t), t € [to, ") NT,
—q(dg(7') — do(72
() = { AT ) —da)
T — T
q, t € [r? +o0)NT.
2. Now assume that the strategies V;,...,V,, of evaders F, ..., E,, are constructed for all

p<r.

3. Construct the strategies Vi, ...,V,, of evaders Ey, ..., E,, forp =1r. Let n; = 27! + 1.
Jo={jly) e H, NH}, J,={j|y) € H N H} }. By virtue of the induction assumption,
in the game I'(nq,|J1|,2°), where 20 = (z%,7"), 2° = (22 ,...,20), 7° = (yjo,j € Jy), the

strategies Vj, j € Ji, of evaders Ej, j € .J;, are defined. Similarly, in the game I'(nq, |.J2|, 2°),

63



where 20 = (2°,9°), 2° = (29,....,20 ), 9° = (49,5 € Ja), the strategies V;, j € Jp of
evaders Ej, j € Jp, are defined. Next, suppose that y is one of the points 5, j € .Jy, that is
nearest to the hyperplane H,,, and H, is a hyperplane that is parallel to H,, and passes through ¢°,
yg is one of the points y]Q, J € Jo, that is nearest to the hyperplane ;. Also, suppose that Hg is a
hyperplane that is parallel to H, and passes through yg; Ho(t) = Ho + (t — to)q; Hg(t) = Hp —
—(t—to)q; t; € T is the first time instant when all evaders £}, j € Ji, reach the hyperplane H,(t;)
when using strategies Vj(t), J € Ji; ta € T is the first time instant when all evaders F;, j € Js,
reach the hyperplane Hps(t,) when using strategies V;(t), j € Jo; £ = max{t,, to}; du(t) is the
distance from the point w, (t) = y.(t) + (t — t)q to the hyperplane H,(%); dg(t) is the distance
from the point wg(t) = yz(t) — (¢t — t)q to the hyperplane H,(f). Note that ¢ € T, d,(t) = 0,
ds(t) > 0. Two cases are possible.

3.1. There exists a time instant ¢ € T, £ > ¢, for which d,(f) = ds(f). Then we define the
strategies V;, ..., V,, of evaders F, ..., E,, in the game I'(n, m, 2°) as follows. For all j € Jj,

we assume v;(t) = 7,(t), t € T. If j € J,, then we assume

v;(t) = {Ej(t)’ t€lto, N,

q, t € (t,+00)N'T.

3.2. Forall t € T, t > {, the inequality d,(t) # d(t) holds. Then there exist time instants 7,
7y €T, t <7 < T, (F1,72) NT = 0, for which d.(7;) < ds(72), da(72) > ds(72). Define the
controls of evaders Ej;, j € J, as follows. If j € .J;, then we assume v;(t) = v,(t) for all ¢ € T.
If do(72) > dg(71) and j € Jp, then we assume

(1), t €fto,7)NT,
do (7o) — dg(7 )
v(t) = al (77:_22)_ 7:16(71)), t =1,
q, te [7:27 +OO) N T.

If dg(71) > do(72) and j € J,, then we assume

v, (1), LeE [t A)NT,
—q(dp(71) — do (7 .
v;(t) = q( 5(71) _ (7'2))’ =4,
To—T
q, t € [Ta,+00) N T.
Let 7y € T be the time instant when all evaders Ej;, j € J, reach the hyperplane H, (7). Using
the induction and Lemma 3.2, we find that on [to, 7] N T pursuers P, ..., P, catch no more than
(p — 1)27 + 1 evaders. By virtue of Lemma 3.2, on [7y, +00) N T pursuers Py, ..., P, catch no
more than 2P evaders. Therefore, the total number of evaders that pursuers Py, ..., P, catch is no
more than p - 2P 4 1. This proves the theorem. U

Remark 4.1. In accordance with the constructed strategies, the motion of the evaders occurs as
follows. Originally the phase space is divided into layers by parallel hyperplanes in such a way that in
each hyperplane there is one pursuer and inside the layer formed by two neighboring hyperplanes there
are no pursuers. In the first step, the evaders that lie in the layer formed by two neighboring hyperplanes
move so that all of them are on a hyperplane parallel to these hyperplanes. In the second step, the evaders
situated on two neighboring hyperplanes come together, and so on. Before the last step, all evaders lie in
two parallel hyperplanes. In the last step, the evaders come together so as to be in one hyperplane, and
they keep moving along the normal to this hyperplane with the maximum velocity.

Define the function f: N — N

f(n) = min{m | in the game I'(n, m, z°) an evasion from an encounter

occurs from any initial positions z°}.
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Theorem 4.2. There exists a constant C; > 0 such that for any natural n, n # 1, the
following inequality holds:
f(n) < Cinlnn.

P roof. It follows from Theorem 4.1 that for any natural p the following inequality holds:
f(2P+1)<p-2P 4+ 2.
Let n € N, n # 1. Take a natural number p such that
2t <n< 2P 41

Then
f(n) < £ +1) <p-2 +2< Crlun,

where C = % This proves the theorem. 0

Let Int A and co A denote the interior and the convex hull of the set A, respectively.

Theorem 4.3 (see [29, p. 7]). Suppose that in the game T'(n, 1, 2°)
yY € Intco{a9,...,20}.
Then a capture occurs in the game T'(n, 1, 2°).

Theorem 4.4. There exists a constant Cy > 0 such that for any n € N the following
inequality holds:
f(n) = Cynlnn.

This theorem is proved along the same lines as the theorem of [9] using Theorem 4.3.

Corollary 4.1. For any natural number [ there exist natural numbers n, m and a vector
of initial positions, 2°, such that m — n > | and a capture occurs in the game I'(n, m, 2°).

Corollary 4.2. For any natural number | there exist natural numbers n,m such that
in the game T'(n,m,2°) an evasion from an encounter occurs for any 2°, and in the game
L(n+1,m+1,2") a capture occurs for some z".

The proofs of the last two corollaries are identical to those of the corresponding corollaries
in [9].

Remark 4.2. We note that the results of [9] are a consequence of the results of this paper for
T =RL
Funding. This research was funded by the Ministry of Science and Higher Education of the
Russian Federation in the framework of state assignment No. 075-01483-23-00, project FEWS—
2020-0010.
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E. C. Mosicezosa, H. H. Ilempos
JAuddepeHnuanbHas Urpa «Ka3aku—pa300iiHMKH» BO BPEMEHHBIX HIKAJAX

Kniouesvie cnosa: muddepeHnmanbHas urpa, TpyIoBOe TpecieoBaHNe, IpecieaoBareib, yOeTalommi,
3a/la4a YKJIIOHCHUs, BpEeMEHHasl IIKaja.

VJIK: 517.977
DOI: 10.35634/2226-3594-2023-62-05

B xoHEYHOMEPHOM E€BKIHMIOBOM MPOCTPAHCTBE PacCMaTpUBACTCS 3aada MPOCTOro MPeCcIeIOBaHUS IPyTI-
NOH TpeciiefoBaTeell rpyInsl yoeraromux B 3aJaHHOH BPEMEHHOM IIKasle ¢ PaBHBIMH BO3MOKHOCTSIMH
BCEX YYaCTHUKOB. MHOXECTBO YIPABJICHUN Ka)XJIOr0 y4aCTHHKA — IIAp pajuyca €IWHULA C LIEHTPOM B
Havajie KoopAauHat. Llenpto Tpynmel npecnenoBareneii ABisieTcsl mouMKa Beex yoeraronux. LleneBbie MHO-
YKeCTBa — Hadayo KoopAuHaT. Llens rpynmer yOerarommx mpoTHBOIIONO0XKHA, TO €CTh PEIOCTaBUTh BO3MOXK-
HOCTb XOTA OBl OTHOMY M3 yOerarommx n30exarsb MOMMKH. [1omydeHbl yCIOBUS pa3peliiMOCTH JIOKaJIbHOM
¥ D100aNbHOHN 3a/1ad YKIOHEHHsI, a TaKKe OLCHKU CBEPXy W CHHU3Y I HaMMEHBLICTO YKcia yOeraromux,
YKJIOHSIFOIIMXCS OT 33JaHHOIO YUClia IpeciieioBareneil n3 Jro0bIX Ha4albHBIX IO3ULUH.

dunancupoBanue. VccienoBaHus BBINOMHEHBI NMPH (UHAHCOBOM MOIAEp)Ke MUHHCTEPCTBa HAyKH H
BbIcIiero obpazoBanus PP B pamkax rocymapcrBenHoro 3amanus Ne 075-01483-23-00, mpoext FEWS-—
2020-0010.
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