Построение решения задачи управления по быстродействию при нарушении гладкости кривизны границы целевого множества

  • Павел Дмитриевич Лебедев
    • Институт математики и механики УрО РАН
    • Уральский федеральный университет
  • Александр Александрович Успенский
    • Институт математики и механики УрО РАН
    • Уральский федеральный университет
Ключевые слова: задача быстродействия, рассеивающая кривая, биссектриса множества, псевдовершина, функция оптимального результата, кривизна

Аннотация

В развитие аналитических и численных алгоритмов построения негладких решений задач оптимального управления предложены процедуры конструирования рассеивающих кривых для одного класса задач управления по быстродействию. Рассматриваются задачи о приведении за минимальное время решений динамической системы с круговой вектограммой скоростей для случая, когда целевое множество, вообще говоря, невыпуклое, при этом его граница имеет точки, в которых нарушается гладкость кривизны. Указанные точки относят к псевдовершинам - характеристическим точкам целевого множества, отвечающим за возникновение сингулярности функции оптимального результата. При формировании надлежащей (в данном случае учитывающей геометрию вектограммы скоростей управляемой системы) перепараметризации дуги границы целевого множества, содержащей псевдовершину, рассеивающая кривая конструируется в виде интегральной кривой. При этом начальные условия соответствующей задачи Коши определяются свойствами псевдовершины. Одна из числовых характеристик псевдовершины, маркер псевдовершины, определяет начальную скорость материальной точки, описывающей гладкий участок рассеивающей кривой. Указанный подход к выявлению и построению (в аналитическом или численном виде) сингулярных кривых ранее обоснован для ряда различных по порядку гладкости случаев границы цели. Следует подчеркнуть, что рассматриваемый в работе случай является наиболее специфичным, в частности, из-за выявленной связи динамической задачи с задачей алгебры многочленов. Доказано, что маркер псевдовершины является неположительным корнем некоторого многочлена третьего порядка, коэффициенты которого определяются односторонними производными кривизны в псевдовершине границы целевого множества. Эффективность развиваемых теоретических методов и численных процедур проиллюстрирована на конкретных примерах.

Литература

1. Лебедев П.Д., Успенский А.А. Аналитическое и численное конструирование функции оптимального результата для одного класса задач быстродействия // Прикладная математика и информатика: труды факультета ВМК Моск. ун-та. 2007. № 27. С. 65-79.
2. Лебедев П.Д., Успенский А.А. Геометрия и асимптотика волновых фронтов // Изв. вузов. Матем. 2008. № 3 (550). С. 27-37. http://mi.mathnet.ru/ivm1241
3. Субботин А.И. Обобщенные решения уравнений в частных производных первого порядка. Перспективы динамической оптимизации. М.-Ижевск: Институт компьютерных исследований, 2003. 336 с.
4. Кружков С.Н. Обобщенные решения уравнений Гамильтона-Якоби типа эйконала. I. Постановка задач, теоремы существования, единственности и устойчивости, некоторые свойства решений // Математический сборник. 1975. Т. 98 (140). № 3 (11). С. 450-493.
5. Демьянов В.Ф., Васильев Л.В. Недифференцируемая оптимизация. М.: Наука, 1981.
6. Айзекс Р. Дифференциальные игры. М.: Мир, 1967.
7. Арнольд В.И. Особенности каустик и волновых фронтов. М.: ФАЗИС, 1996.
8. Седых В.Д. О топологии волновых фронтов в пространствах небольших размерностей // Изв. РАН. Сер. матем. 2012. T. 76. Вып. 2. С. 171-214.
https://doi.org/10.4213/im4572
9. Лебедев П.Д., Успенский А.А. Построение функции оптимального результата и рассеивающих линий в задачах быстродействия с невыпуклым целевым множеством // Труды Института математики и механики УрО РАН. 2016. Т. 22. № 2. С. 188-198.
https://doi.org/10.21538/0134-4889-2016-22-2-188-198
10. Успенский А.А., Лебедев П.Д. Выявление сингулярности обобщенного решения задачи Дирихле для уравнения типа эйконала в условиях минимальной гладкости границы краевого множества // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. 2018. Т. 28. Вып. 1. С. 59-73.
https://doi.org/10.20537/vm180106
11. Рашевский П.К. Курс дифференциальной геометрии. М.: Едиториал УРСС, 2003.
12. Успенский А.А., Лебедев П.Д. О множестве предельных значений локальных диффеоморфизмов при эволюции волновых фронтов // Труды Института математики и механики УрО РАН. 2010. Т. 16. № 1. С. 171-185.
13. Ушаков В.Н., Успенский А.А., Лебедев П.Д. Геометрия сингулярных кривых для одного класса задач быстродействия // Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления. 2013. Вып. 3. С. 157-167.
14. Успенский А.А., Лебедев П.Д. Построение функции оптимального результата в задаче быстродействия на основе множества симметрии // Автоматика и телемеханика. 2009. Вып. 7. С. 50-57.
15. Винберг Э.Б. Алгебра многочленов. Учебное пособие для студентов-заочников III-IV курсов физико-математических факультетов педагогических институтов. М.: Просвещение, 1980.
16. Лебедев П.Д., Успенский А.А. Программа построения волновых фронтов и функции евклидова расстояния до компактного невыпуклого множества. Свидетельство о государственной регистрации программы для ЭВМ № 2017662074 от 27.10.2017.
17. Лебедев П.Д., Успенский А.А. Конструирование негладкого решения задачи управления по быстродействию при низком порядке гладкости границы целевого множества // Труды Института математики и механики УрО РАН. 2019. Т. 25. № 1. С. 108-119.
https://doi.org/10.21538/0134-4889-2019-25-1-108-119
Поступила в редакцию 2019-05-02
Опубликована 2019-05-20
Выпуск
Раздел
Математика
Страницы
98-114