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PROBLEM
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In strongly 
oupled �uid-stru
ture intera
tion simulations, the �uid dynami
s and solid dynami
s problems are solved

independently on their own meshes. Therefore, it be
omes ne
essary to interpolate the physi
al properties (pressure,

displa
ement) a
ross two meshes. In the present paper, we propose to a

elerate the interpolation pro
ess by the

method of radial basis fun
tions using the matrix-free solution of the system of equations on a GPU. Also, we redu
e

the number of equations in the system by using an adaptive algorithm for 
hoosing interpolation points. The adaptive

algorithm allows to redu
e the number of equations of the interpolation system while preserving the quality of the

interpolation. Estimation of the e�e
tiveness of redu
ing the 
omputational 
osts based on the matrix-free approa
h

to solving the system, as well as evaluating the quality of interpolation, was 
arried out using the simulation of the

problem of modeling the �ow of �uid with a supersoni
 deformable nozzle.
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Introdu
tion

Several approa
hes are used to simplify algorithms for the numeri
al solving of the Fluid-

Stru
ture Intera
tion (FSI) problem su
h as the de
reasing of the problem size, algorithms a
-


elerating the 
omputations, the analysis methods and the use of the properties of subtasks.

Let us 
onsider the variants of de
reasing the 
omputational 
osts at the interpolation of data be-

tween non-mat
hing meshes: the de
rease of the interpolation data; the parallelization of algorithms

taking into a

ount the geometry of the extended boundaries of axisymmetri
 bodies.

The main methods for interpolation on non-mat
hing meshes for the FSI simulations are surveyed

in [1, 2℄. We 
onsider a method based on radial basis fun
tions (RBF) [3℄, where the 
oe�
ients

of the interpolant are found from the system of equations, the matrix of whi
h is formed using a

radial basis fun
tion. The 
hoi
e of the fun
tion determines the 
ondition number and density of

the matrix, and, as a result, the 
omputational 
omplexity of solving the system of equations.

The RBF interpolation has the following advantages:

• it does not require any mesh 
onne
tivity information;

• it requires solving a sparse system of equations, espe
ially with the 
ompa
t basis fun
tions;

• it 
an be e�
iently parallelized.

This paper is stru
tured as follows. Se
tion 2 brie�y des
ribes the RBF interpolation s
heme for

the FSI problem. The next se
tion presents a new approa
h based on layer-by-layer mesh partitioning

for redu
ing the problem size. The fourth se
tion des
ribes a matrix-free solution of the interpolation

problem on a GPU.

� 1. RBF interpolation for FSI problems

Let P d
Q−1

be the d-dimensional spa
e of the polynomials of a degree smaller than Q − 1 and

p1, . . . , pq be a basis in this spa
e. The main idea of the RBF method is to �nd the required

interpolation fun
tion as a linear 
ombination of the following fun
tions:

w(xi) =

n
∑

j=1

αjφ(‖xi − xj‖) +

q
∑

l=1

βlpl(xi), (1.1)
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where q is additional degrees of freedom and the 
oe�
ients αi and the polynomials pl(xi) satisfy

n
∑

j=1

αjpl(xj) = 0, 1 6 l 6 q. (1.2)

The solution of the system exists and is unique if

p(xj) = 0, for all 1 6 j 6 n and p ∈ P d
Q−1 implies p = 0. (1.3)

The system of equations (1.1)�(1.3) is always solvable if φ is a positive-de�nite radial basis fun
tion.

Let Ω be the domain with the given pressure pΩ. The domain with the required pressure is

denoted by Φ. The pressure interpolation between the meshes 
an be expressed in the matrix form

as follows:

[

WΩΩ PΩ

P T
Ω

O

] [

α
β

]

=

[

pΩ
0

]

or Aγ = b, (1.4)

here WΩΩ is the nΩ × nΩ matrix 
onsisting of the elements φ( ‖xi
Ω
− xj

Ω
‖ ) and 1 6 i, j 6 nΩ; PΩ is

the 
olumn matrix 
onsisting of the elements

[

1 xi
Ω

]

; α, β are the 
oe�
ients of the interpolant; nΩ

is the number of interpolation points of the domain. The target pressure ve
tor pΦ is obtained by

the matrix-ve
tor produ
t

pΦ = [WΦΩPΦ]

[

α
β

]

, (1.5)

where WΦΩ is the nΦ × nΩ matrix 
onsisting of the elements φ( ‖xi
Φ
− xj

Ω
‖ ), 1 6 i 6 nΦ and

1 6 j 6 nΩ; nΦ is the number of interpolation points on the domain Φ; PΦ is the 
olumn ma-

trix

[

1 xi
Φ

]

. The dimension of the matri
es PΩ and PΦ depends on the type of basis fun
tions. For

example, the dimension of the matri
es WΩΩ and WΦΩ for the global radial basis fun
tion Thin-Plate

Spline is 3× nΩ and 3× nΦ, respe
tively.

Solving the system of equations (1.4) is the most 
omputationally expensive part of the in-

terpolation. In [4℄, it was shown that the 
hoi
e of basis fun
tions a�e
ted both the quality of

the interpolation and the solution time. The fun
tions providing more a

urate interpolation may

require a large amount of time for the solution. The 
omputational 
ost 
an be optimized by (i) re-

du
ing the system and (ii) parallelizing the steps of the pre
onditioning and solution of sparse/dense

systems of equations.

� 2. Redu
ing the size of the system of equations

In this se
tion, we demonstrate redu
ing the size of the system of equations for the �uid-stru
ture

intera
tion of a supersoni
 �ow with a nozzle wall that has a high geometri
 expansion ratio [5℄.

The boundary along whi
h the 
omputational data are interpolated is quite long and the pressure is

irregularly distributed along the boundary Ω (the nozzle wall). The solution of the above problems

is 
onsidered within the framework of the layer-by-layer mesh partitioning method proposed in our

previous work [6℄. The method provides a 
on�i
t-free data a

ess during the parallel summation

of the 
omponents of the �nite element ve
tors in the shared memory of the multi-
ore 
omputing

systems.

Let us divide the interfa
e part ΓΩh = ∂Ωh
of the mesh Ωh

into layers. To do this, we use the

neighborhood 
riterion where any two mesh 
ells are 
onsidered adja
ent if they have at least one


ommon node.

The 
onsidered physi
al area and the 
omputational mesh are symmetri
al. Therefore, the 
hoi
e

of the initial set of interpolation points is 
arried out in a

ordan
e with the distribution of the layers.

Here, there are two possibilities for sele
ting layers: along the generatrix and along the dire
trix.
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(a)

(b) (
)

Fig. 1. The interfa
e boundary partitioned into 150 layers (a); the partition into 15 layers parallel

to the dire
trix (b) and the partition into 15 layers by the surfa
e generatrix (
)

(a)
(b) (
)

Fig. 2. The given pressure distribution at the boundary of the domain Ω (a); the pressure distribu-

tion obtained at the use of 15 out of 150 layers at the radial partition (b) and at the partition along

the generatrix (
)

The mesh ΓΩh is the dis
rete des
ription of the rotation surfa
e ΓΩ with the 
losed dire
trix. To

form layers in parallel to the dire
trix ΓΩ (see Fig. 1, b) or along the surfa
e generatrix (see Fig. 1, 
),

we use the algorithm proposed in [6℄.

The layer-by-layer partitioning is used to redu
e the number of interpolation points. To 
onstru
t

the interpolant, we 
hoose those layers of the interfa
e surfa
e whi
h most a

urately represent the

distribution of the interpolated data (pressure). Figure 1 shows the partitioning of the surfa
e

mesh into 150 layers. The dark layers 
orrespond to 15 layers involved in the pressure interpolation

(Fig. 1, b, 
).

The quality of interpolation is 
ompared for the lo
al φ(‖x‖) = 1 − ‖x‖, φ(‖x‖) = (1 − ‖x‖)2,
the global φ(‖x‖) = e−‖x‖2

, φ(‖x‖) = ‖x‖2 log ‖x‖ basis fun
tions and Inverse Distan
e Weighting

(IDW) [7℄, using di�erent partitions and numbers of layers. The quality of the pressure interpolation


an be estimated as the relative error 
omputed by the ratio of the norms of the resultant for
es of

the pressure on the interfa
e boundary.

Table 1 shows the results for the pressure interpolation in parallel to the dire
trix (Radial par-

titioning) and along the surfa
e generatrix (Longitudinal partitioning). In the se
ond 
olumn, the

evaluation of the interpolation quality is given for all possible interpolation points of ΓΩh .

The quality of the interpolation with the data redu
tion depends not only on the number of

interpolation points but also on the 
hoi
e of the points (Fig. 2). When 
ompa
t basis fun
tions

in the form (1 − ‖x‖)2 are used, the orientation of the pressure distribution after the interpolation

depends on the partitioning. The best interpolation is a
hieved for the radial partitioning of the

domain. The RBF method using the global basis fun
tion φ(x) = ‖x‖2 log ‖x‖ gives the best results.

44



It allows to redu
e the number of equations in system (1.4) by a fa
tor of 15 with the a

eptable

quality of the interpolation. The IDW interpolation gives the greatest error, even in the 
ase of the

full data.

Table 1. Relative error of the pressure interpolation, %

nΩ 28800 9600 5760 2880 960

Longitudinal distribution

1− ‖x‖ 0.24 3.79 10.4 15.2 349.6

(1− ‖x‖)2 0.78 7.79 69.3 74.3 365.4

IDWp=3 14.2 50.6 105 189 407.0

e−‖x‖2
0.54 1.18 2.68 8.04 147.6

‖x‖2 log ‖x‖ 0.01 0.23 1.07 5.95 28.61

Radial distribution

1− ‖x‖ 0.24 0.34 0.92 10.8 214.3

(1− ‖x‖)2 0.78 1.58 9.34 15.9 36.5

IDWp=3 14.2 53.9 111 205 534.2

e−‖x‖2
0.54 1.07 3.99 5.41 101.6

‖x‖2 log ‖x‖ 0.01 0.01 0.21 1.13 21.6

Adaptive distribution

1− ‖x‖ 0.24 1.23 1.14 0.93 4.89

(1− ‖x‖)2 0.78 0.67 1.75 2.41 1360

IDWp=3 14.2 26.1 27.3 30.8 85.1

e−‖x‖2
0.54 0.94 1.12 0.82 9.61

‖x‖2 log ‖x‖ 0.01 0.37 1.25 1.31 3.65

The obtained matrix A is ill-
onditioned. When using global basis fun
tions, the 
ondition

number depends on the number and lo
ation of the interpolation points, as well as on the type of

the basis fun
tions. The distan
e between the interpolation points in�uen
es the 
ondition number.

As the number of interpolation points in
reases, the distan
e between them de
reases, and the


ondition number in
reases.

For interpolation it is pra
ti
al to use an adaptive algorithm. It should be noted that the

interpolation error is not the only reason for its use. In [8℄, it was shown that in the RBF-based in-

terpolation, the optimal distribution for the 
ase of a two-dimensional spa
e was the asymptoti
ally

uniform distribution of points. In the 
onsidered 
ase, at the initial non-uniform distribution of the

data, the adaptive 
hoi
e of the interpolation points is preferable sin
e it allows obtaining the inter-

polation point distribution providing a minimum error. Note that in the 
ase of the asymptoti
ally

uniformly distributed interpolation points, theoreti
ally, an arbitrarily high error 
an be obtained

for some fun
tions; however, for others it is unattainable. Even the use of greedy algorithms [9℄ does

not provide an optimal interpolation by the RBF method for an arbitrary fun
tion.

The aim of the adaptive algorithm is to a
hieve a su�
iently small error for the interpolation

with the use of na ≪ nΩ points only, where nΩ is the initial number of interpolation points.

The adaptive algorithm starts with a very small number of points and then re�nes the data set

by adding new points of the interpolation where the observed interpolation error is largest. The

algorithm 
onstru
ts an interpolant for the redu
ed set of points, whi
h reprodu
es the interpolation

fun
tion in 
ertain toleran
e limits. Furthermore, limits 
an be imposed on the number of iterations

and the total number of interpolation points (na).

In the �uid dynami
s problem on a �ow in a supersoni
 overexpanded nozzle, the line ℓ =
= {(argminx p(x, ϕ∗), ϕ∗) ∈ Γ: 0 6 ϕ∗ < 2π} divides the set of interpolation points Ω into Γ1, where

p = p(x) is the axial symmetry region, and Γ2, where p = p(x, ϕ) (Fig. 3�5, a).

Let us apply the adaptive algorithm to the pressure interpolation for the 
onsidered �uid-

stru
ture intera
tion problem. At the �rst step, we apply it to the layers to whi
h the set of

45



(a)
(b) (
)

Fig. 3. Pressure distribution: (a) adaptive distribution with nΩ = 9600; (b) e−‖x‖2
; (
) 1− ‖x‖

interpolation points is divided, i.e. we redu
e the set of interpolation points along the 
oordinate x.
Thus, from all the layers we leave the minimum number of layers satisfying the error of interpolation.

At the se
ond step, we apply this algorithm to ea
h remaining layer to sele
t the interpolation points

with the largest error in the 
oordinate ϕ. Thus, we redu
e the number of the interpolation points

preserving the interpolation error.

Adaptive algorithm for sele
ting interpolation points

Let us

1) sele
t an initial set of layers and solve Aγ = b for na init points;

2) form and solve the linear system of the interpolation 
oe�
ients for the initial layers Aγ = b;

3) evaluate the interpolant at all nΩ data points pΦ = Aγ;

4) 
ompute the residual ve
tor or �nd errors E(x) = p(x)− pΩ(x);

5) 
he
k the stopping 
riteria, and if they are not satis�ed, in
rease the iteration 
ount and add

new points with the largest error E(x).

The adaptation is su

essfully 
ompleted if the residual is smaller than the given toleran
e.

In addition to the pressure p = p(x, ϕ) determined on Ω, the gradient grad p is also known. It

is used as an indi
ator of the addition of interpolation points. Layers and interpolation points are

added to the minimal set of points when they are lo
ated in regions of the largest gradient.

In the absen
e of any additional information on the distribution of the interpolated data (e.g.,

in the 
ase of the pressure interpolation it is a gradient), the indi
ator of the interpolation error is

formed on the basis of lo
al basis fun
tions or by the IDW method.

Table 1 shows the error of the pressure interpolation using the adaptive distribution of interpo-

lation points. It should be noted that the adaptive 
hoi
e of interpolation points in
reases of the


ondition number of the matrix of the system of equations (1.4), and, thus, the iterative solution

pro
ess 
onverges slowly.

The adaptive distribution of the interpolation points using the lo
al basis fun
tion 1− ‖x‖ sub-

stantially redu
es the error for any number of interpolation points, and another lo
al basis fun
tion

(1 − ‖x‖)2 has a large error for a small number of points. The Gaussian global fun
tion (Fig. 5, b)

shows good results for a small number of the adaptively 
hosen points nΩ = 960.

� 3. Matrix-free solution of interpolation problem on GPU

One of the spe
i�
 features of the system (1.4) is a dense matrix, whi
h imposes some restri
tions

on the GPU use due to the small 
apa
ity of the available GPU memory. The problem 
an be resolved

by (i) using several GPUs, thereby in
reasing the total memory available for the system solution;

(ii) solving the system of equations without the formation of a matrix (Matrix-Free Algorithm or

MFA). In this 
ase, the matrix elements are 
omputed as they are required in the algorithm of the

system solution. The solution of the system by the RBF method is possible without the formation of
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(a)
(b) (
)

Fig. 4. Pressure distribution: (a) adaptive distribution with nΩ = 5760; (b) e−‖x‖2
; (
) 1− ‖x‖

(a)
(b) (
)

Fig. 5. Pressure distribution: (a) adaptive distribution with nΩ = 960; (b) e−‖x‖2
; (
) 1− ‖x‖

a matrix. sin
e the matrix elements are 
omputed by the 
hosen basis fun
tion. This improves the

data lo
ality and arithmeti
 intensity for matri
es and ve
tors. The memory requirements and CPU-

GPU 
ommuni
ations are redu
ed. The e�
ien
y of the algorithm 
an be improved if multi-GPUs

are used in the similar way to that in [10℄.

Let us 
onsider in more detail the MFA 
omputing expenses. Table 2 shows the time of the

sequential and parallel formation of the matrix A of the system (1.4). In the MFA, the formation

time is ex
luded. For 
omparison, the time of the solution of the system with an assembled matrix is

given. The time of 
opying the matrix A of the system (1.4) to the GPU memory is also presented.

In addition, the time is given for solving the system with the use of both the algorithm with an

assembled matrix and the matrix-free solution algorithm.

The CPU parallelization is 
arried out with OpenMP. The solution of the system of equations

on several GPUs is 
arried out by CUDA in 
onjun
tion with OpenMP. The system of equations is

solved by the 
onjugate gradient method with the diagonal pre
onditioner [10℄. The pre
ision is equal

to 10−6
. In the 
omputations, double-pre
ision arithmeti
 is used. The analysis and performan
e

estimations are performed on a 
omputing node 
onsisting of 2×quad-
ore Intel Xeon pro
essor

E5-2609, 2×GeForce GTX 980 with 4Gb GDDR.

When the system of equations is solved using the assembled matrix on the CPU, the step of the

matrix formation is added. The use of GPU in
reases the 
ost due to the ne
essity of 
opying the

data to the GPU. When the system is solved using the MFA the 
ost is not in
reased be
ause there

in no need to 
opy the data. In the last line of Table 2, the total time is given for ea
h of the above

approa
hes.

The numeri
al 
omputations show that the use of eight CPU threads within one 
omputing node

redu
es the solution time almost by a fa
tor of seven. One GPU allows to speed up solving the

system by a fa
tor of 250 
ompared with one CPU thead and by a fa
tor of 50 
ompared with

8 × CPU. The GPU e�
ien
y in
reases with the in
rease of the system size. Using two GPUs

redu
es the time by a fa
tor of 1.5 
ompared with one GPU and by a fa
tor of 350 
ompared with

the CPU. With an in
rease in the number of GPUs, the strong s
alability 
an be provided only when
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Table 2. The exe
ution time of the interpolation for e−‖x‖2
, s

Number of equation

960 9600 19200 28800

Forming A
1× CPU 0.098 5.655 33.91 60.85

8× CPU 0.018 0.907 6.166 12.16

MFA 0.0 0.0 0.0 0.0

Copy of A to GPU

1×GPU 0.009 0.312 0.842 �

2×GPU 0.006 0.125 0.433 1.393

MFA 0.0 0.0 0.0 0.0

System solution Aγ = b

1× CPU 3.343 592.8 4732 10359

8× CPU 0.271 86.82 946.6 2273

1×GPU 0.288 2.282 12.11 �

2×GPU 1.262 2.354 8.643 16.19

Matrix-free algorithm

8× CPU 1.712 249.5 1489 4492

1×GPU 0.471 14.01 91.59 191.1

2×GPU 1.226 8.664 47.03 95.58

Total time

1× CPU 3.438 598.5 4765 10419

8× CPU 0.288 86.82 952.7 2285

1×GPU 0.317 3.53 19.12 �

2×GPU 1.283 3.38 15.24 29.74

Matrix-free algorithm

8× CPU 1.712 249.6 1489 4492

1×GPU 0.472 14.01 91.59 191.1

2×GPU 1.226 8.664 47.03 95.58

the sizes of the submatri
es on ea
h GPU are preserved.

The matrix-free solution of the system using 8 × CPU redu
es the solution time by a fa
tor of

2.5. However, the solution with the assembled matrix is twi
e as fast as the matrix-free solution.

When one GPU is used, the time for the matrix-free solution of the system of equations is 5 times

larger than that for the solution with the assembled matrix, and in the 
ase of using two GPUs,

the matrix-free solution is 3 times longer. The speedup obtained at the use of one CPU thread is

55 times smaller than that when using one GPU and 110 times smaller than that when using two

GPUs. It should be noted that the use of lo
al basis fun
tions with an introdu
ed radius of in�uen
e

in
reases the MFA e�
ien
y.

Let us estimate the maximum size of the system, whi
h 
an be solved using the MFA on a one

GPU. For the matrix A formation, the 
oordinates of the interpolation points are used. Then

for interpolation in a three-dimensional spa
e, it is ne
essary to allo
ate memory for the ve
tor

of 
oordinates of length equal to nΩ × 3. The required memory size for solving the system with

the assembled matrix is nΩ × nΩ. The remaining ve
tors parti
ipating in the 
onjugate gradient

method 
oin
ide for both algorithms. Thus, the memory size for interpolating the mesh data in the

three-dimensional spa
e is de
reased by a fa
tor of nΩ/3. The maximum system size solved by the

MFA in
reases by the same fa
tor. The algorithm of the 
onjugate gradient method with a diagonal

pre
onditioner involves the use of memory to store a matrix of size nΩ×3 (the MFA) and six ve
tors

nΩ×1. Thus, for solving the system using the MFA and double pre
ision arithmeti
, nΩ×(3+6)×8
bytes are required. Consequently, the maximum size of a system for the GPU with a 4Gb GDDR

is about 6× 108 equations. Using two graphi
s 
ards, the possible size of the system is in
reased to

1.2 × 109 equations. Thus, for the dense matri
es obtained on the basis of global basis fun
tions,

a parallel method of 
onjugate gradients is 
onstru
ted. The 
omputations are distributed among

several GPUs. The use of the matrix-free approa
h makes it possible to remove any limitations on

the amount of memory.
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� 4. Con
lusion

We propose an algorithm for 
onstru
ting a uniform distribution of interpolation points on an

unstru
tured mesh in the interpolation based on RBF. For solving the problems on unstru
tured

meshes, the adaptive algorithm is proposed for sampling the data for the interpolation based on the

RBF method. The obtained results show that the interpolation on the uniformly distributed data

is of high quality and appli
able for meshes of super-large dimensions. The use of the adaptive data

redu
tion based on the layer-by-layer partition of the mesh makes it possible to redu
e the number

of interpolation points, but requires additional information about the data. At the same time, the

quality of the interpolation for the irregularly-spa
ed data is preserved both for global and for lo
al

basis fun
tions. Using a matrix-free algorithm on large meshes signi�
antly redu
es the memory


osts asso
iated with the formation of the interpolation matrix. At the same time, the 
omputation

lo
ality of the matrix-ve
tor produ
t 
omputations in
reases when solving the system of equations

by iterative methods. The solution of systems with dense matri
es by the MFA on the CPU does

not lead to any signi�
ant time redu
tions. Sin
e the time of the matrix formation is less than 1%

of the solution time, the use of the MFA in 
onjun
tion with the CPU is ine�
ient. The matrix-free

approa
h is most e�e
tive when using a GPU, espe
ially when it is not possible to a
hieve a large

redu
tion of points without the interpolation quality loss. Using a GPU for solving larger systems

of equations allows minimizing the 
ost of additional 
omputations asso
iated with the formation of

the matrix elements.

A further in
rease in the e�
ien
y of the MFA is asso
iated with a de
rease in the number

of iterations of the algorithm for solving the system of equation by 
onstru
ting e�e
tive parallel

pre
onditioners and by using lo
al basis fun
tions with the radius of in�uen
e.
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Ïðè ìîäåëèðîâàíèè ñîïðÿæåííîé çàäà÷è âçàèìîäåéñòâèÿ æèäêîñòè/ãàçà è äå�îðìèðóåìîãî òâåðäîãî òåëà â ðàç-

äåëåííîé ïîñòàíîâêå êàæäàÿ èç çàäà÷ ðåøàåòñÿ íåçàâèñèìî, ñ èñïîëüçîâàíèåì ñîáñòâåííîé ðàñ÷åòíîé ñåòêè.

Îáû÷íî ðàñ÷åòíûå ñåòêè �èçè÷åñêèõ çàäà÷ ÿâëÿåòñÿ íåñîãëàñîâàííûìè, ïîýòîìó âîçíèêàåò íåîáõîäèìîñòü èí-

òåðïîëèðîâàíèÿ �èçè÷åñêèõ äàííûõ (äàâëåíèÿ, ïåðåìåùåíèÿ) íà ãðàíèöå ñîïðÿæåíèÿ ìåæäó äâóìÿ ðàñ÷åò-

íûìè ñåòêàìè. Â ïðåäñòàâëåííîé ñòàòüå ðàññìàòðèâàåòñÿ ñîêðàùåíèå çàòðàò èíòåðïîëÿöèè íà îñíîâå ìåòîäà

ðàäèàëüíûõ áàçèñíûõ �óíêöèé ñ èñïîëüçîâàíèåì áåçìàòðè÷íîãî ðåøåíèÿ ñèñòåìû óðàâíåíèé íà ãðà�è÷åñêèõ

ïðîöåññîðàõ. Êðîìå òîãî, ïðåäñòàâëåí àäàïòèâíûé àëãîðèòì âûáîðà òî÷åê èíòåðïîëÿöèè, ïîçâîëÿþùèé ñîêðà-

òèòü ðàçìåð ñèñòåìû óðàâíåíèé ñ ñîõðàíåíèåì êà÷åñòâà èíòåðïîëÿöèè. Îöåíêà ý��åêòèâíîñòè ñîêðàùåíèÿ

âû÷èñëèòåëüíûõ çàòðàò íà îñíîâå áåçìàòðè÷íîãî ïîäõîäà ðåøåíèÿ ñèñòåìû, à òàêæå îöåíêà êà÷åñòâà èíòåðïî-

ëÿöèè îñóùåñòâëÿëèñü íà ïðèìåðå çàäà÷è ìîäåëèðîâàíèÿ èñòå÷åíèÿ ïîòîêà ãàçà èç ñâåðõçâóêîâîãî äå�îðìè-

ðóåìîãî ñîïëà.
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