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RADIAL BASIS FUNCTION FOR PARALLEL MESH-TO-MESH
INTERPOLATION IN SOLVING FLUID-STRUCTURE INTERACTION
PROBLEM!

In strongly coupled fluid-structure interaction simulations, the fluid dynamics and solid dynamics problems are solved
independently on their own meshes. Therefore, it becomes necessary to interpolate the physical properties (pressure,
displacement) across two meshes. In the present paper, we propose to accelerate the interpolation process by the
method of radial basis functions using the matrix-free solution of the system of equations on a GPU. Also, we reduce
the number of equations in the system by using an adaptive algorithm for choosing interpolation points. The adaptive
algorithm allows to reduce the number of equations of the interpolation system while preserving the quality of the
interpolation. Estimation of the effectiveness of reducing the computational costs based on the matrix-free approach
to solving the system, as well as evaluating the quality of interpolation, was carried out using the simulation of the
problem of modeling the flow of fluid with a supersonic deformable nozzle.
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Introduction

Several approaches are used to simplify algorithms for the numerical solving of the Fluid-
Structure Interaction (FSI) problem such as the decreasing of the problem size, algorithms ac-
celerating the computations, the analysis methods and the use of the properties of subtasks.

Let us consider the variants of decreasing the computational costs at the interpolation of data be-
tween non-matching meshes: the decrease of the interpolation data; the parallelization of algorithms
taking into account the geometry of the extended boundaries of axisymmetric bodies.

The main methods for interpolation on non-matching meshes for the F'SI simulations are surveyed
in [1,2]. We consider a method based on radial basis functions (RBF) [3], where the coefficients
of the interpolant are found from the system of equations, the matrix of which is formed using a
radial basis function. The choice of the function determines the condition number and density of
the matrix, and, as a result, the computational complexity of solving the system of equations.

The RBF interpolation has the following advantages:

e it does not require any mesh connectivity information;
e it requires solving a sparse system of equations, especially with the compact basis functions;
e it can be efficiently parallelized.

This paper is structured as follows. Section 2 briefly describes the RBF interpolation scheme for
the FSI problem. The next section presents a new approach based on layer-by-layer mesh partitioning
for reducing the problem size. The fourth section describes a matrix-free solution of the interpolation
problem on a GPU.

§ 1. RBF interpolation for FSI problems

Let ngl be the d-dimensional space of the polynomials of a degree smaller than ) — 1 and
Di,...,Pq be a basis in this space. The main idea of the RBF method is to find the required
interpolation function as a linear combination of the following functions:

w(z) =Y adllzi — z5]) + Y Bipu(ai), (1.1)
j=1 =1
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where ¢ is additional degrees of freedom and the coefficients «; and the polynomials p;(z;) satisfy

n
S ajm(zy) =0, 1<i<q. (1.2)
7=1

The solution of the system exists and is unique if
p(xj) =0, foralll1 <j<mnandp € Pg_l implies p = 0. (1.3)

The system of equations (1.1)—(1.3) is always solvable if ¢ is a positive-definite radial basis function.

Let © be the domain with the given pressure pg. The domain with the required pressure is
denoted by ®. The pressure interpolation between the meshes can be expressed in the matrix form
as follows:

[VJZ%Q %Hg]:[p(ﬂ or Ay=b, (1.4)

here Woq is the ng X ng matrix consisting of the elements ¢( [|xi, — x4 ) and 1 <4, j < ng; Po is
the column matrix consisting of the elements [1 xb] ; a, B are the coefficients of the interpolant; ng
is the number of interpolation points of the domain. The target pressure vector ps is obtained by
the matrix-vector product

pe = [Woo Po] [ g ], (1.5)

where Waq is the ne x ng matrix consisting of the elements ¢(||x% — x§2|| ), 1<i<ng and
1 < j < ng; ne is the number of interpolation points on the domain ®; Pg is the column ma-
trix [1 Xib]. The dimension of the matrices Py and Pg depends on the type of basis functions. For
example, the dimension of the matrices Wnq and Waq for the global radial basis function Thin-Plate
Spline is 3 X ng and 3 X ng, respectively.

Solving the system of equations (1.4) is the most computationally expensive part of the in-
terpolation. In [4], it was shown that the choice of basis functions affected both the quality of
the interpolation and the solution time. The functions providing more accurate interpolation may
require a large amount of time for the solution. The computational cost can be optimized by (i) re-
ducing the system and (ii) parallelizing the steps of the preconditioning and solution of sparse/dense
systems of equations.

§ 2. Reducing the size of the system of equations

In this section, we demonstrate reducing the size of the system of equations for the fluid-structure
interaction of a supersonic flow with a nozzle wall that has a high geometric expansion ratio [5].
The boundary along which the computational data are interpolated is quite long and the pressure is
irregularly distributed along the boundary € (the nozzle wall). The solution of the above problems
is considered within the framework of the layer-by-layer mesh partitioning method proposed in our
previous work [6]. The method provides a conflict-free data access during the parallel summation
of the components of the finite element vectors in the shared memory of the multi-core computing
systems.

Let us divide the interface part T'gn = 90" of the mesh Q" into layers. To do this, we use the
neighborhood criterion where any two mesh cells are considered adjacent if they have at least one
common node.

The considered physical area and the computational mesh are symmetrical. Therefore, the choice
of the initial set of interpolation points is carried out in accordance with the distribution of the layers.
Here, there are two possibilities for selecting layers: along the generatrix and along the directrix.
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Fig. 1. The interface boundary partitioned into 150 layers (a); the partition into 15 layers parallel
to the directrix (b) and the partition into 15 layers by the surface generatrix (c)

(%) ) ©

Fig. 2. The given pressure distribution at the boundary of the domain Q (a); the pressure distribu-
tion obtained at the use of 15 out of 150 layers at the radial partition (b) and at the partition along
the generatrix (c)

The mesh I'gnr is the discrete description of the rotation surface I'g with the closed directrix. To
form layers in parallel to the directrix I'q (see Fig. 1, b) or along the surface generatrix (see Fig. 1, ¢),
we use the algorithm proposed in [6].

The layer-by-layer partitioning is used to reduce the number of interpolation points. To construct
the interpolant, we choose those layers of the interface surface which most accurately represent the
distribution of the interpolated data (pressure). Figure 1 shows the partitioning of the surface
mesh into 150 layers. The dark layers correspond to 15 layers involved in the pressure interpolation
(Fig. 1, b, ¢).

The quality of interpolation is compared for the local ¢(|[x|) = 1 — [|x||, ¢(|x]]) = (1 — ||x|))?,
the global ¢(|[x|) = e IXI*, ¢(||x||) = ||x||?log ||x|| basis functions and Inverse Distance Weighting
(IDW) [7], using different partitions and numbers of layers. The quality of the pressure interpolation
can be estimated as the relative error computed by the ratio of the norms of the resultant forces of
the pressure on the interface boundary.

Table 1 shows the results for the pressure interpolation in parallel to the directrix (Radial par-
titioning) and along the surface generatrix (Longitudinal partitioning). In the second column, the
evaluation of the interpolation quality is given for all possible interpolation points of I'gx.

The quality of the interpolation with the data reduction depends not only on the number of
interpolation points but also on the choice of the points (Fig. 2). When compact basis functions
in the form (1 — ||x||)? are used, the orientation of the pressure distribution after the interpolation
depends on the partitioning. The best interpolation is achieved for the radial partitioning of the
domain. The RBF method using the global basis function ¢(x) = ||x||? log ||x|| gives the best results.
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It allows to reduce the number of equations in system (1.4) by a factor of 15 with the acceptable
quality of the interpolation. The IDW interpolation gives the greatest error, even in the case of the
full data.

Table 1. Relative error of the pressure interpolation, %

ne 28800 9600 5760 2880 960
Longitudinal distribution

1— x| 024 379 104 152 3496

(1— |x|)2 0.78 7.79 69.3 743 365.4

IDW,_3 142 50.6 105 189 407.0

e IIxII? 054 1.8 268 8.04 1476

Ix||?log ||| 0.01 023 1.07 595 28.61
Radial distribution

1— x| 024 034 092 108 2143
(1 — |Ix|)? 0.78 1.58 934 159 36.5
IDW,_3 142 539 111 205 534.2
e IIxII? 054 1.07 3.99 541 101.6

|2 log ||x|| 0.01 0.01 0.21 1.13 21.6
Adaptive distribution

1— x| 024 123 1.14 093 489
(1 —|x|)? 0.78 0.67 1.75 241 1360
IDW,_3 142 261 273 308 85.1
eIl 054 094 1.12 082 961

Ix||?log ||| 0.01 037 125 131 3.65

The obtained matrix A is ill-conditioned. When using global basis functions, the condition
number depends on the number and location of the interpolation points, as well as on the type of
the basis functions. The distance between the interpolation points influences the condition number.
As the number of interpolation points increases, the distance between them decreases, and the
condition number increases.

For interpolation it is practical to use an adaptive algorithm. It should be noted that the
interpolation error is not the only reason for its use. In [8], it was shown that in the RBF-based in-
terpolation, the optimal distribution for the case of a two-dimensional space was the asymptotically
uniform distribution of points. In the considered case, at the initial non-uniform distribution of the
data, the adaptive choice of the interpolation points is preferable since it allows obtaining the inter-
polation point distribution providing a minimum error. Note that in the case of the asymptotically
uniformly distributed interpolation points, theoretically, an arbitrarily high error can be obtained
for some functions; however, for others it is unattainable. Even the use of greedy algorithms [9] does
not provide an optimal interpolation by the RBF method for an arbitrary function.

The aim of the adaptive algorithm is to achieve a sufficiently small error for the interpolation
with the use of n, < ng points only, where nq is the initial number of interpolation points.

The adaptive algorithm starts with a very small number of points and then refines the data set
by adding new points of the interpolation where the observed interpolation error is largest. The
algorithm constructs an interpolant for the reduced set of points, which reproduces the interpolation
function in certain tolerance limits. Furthermore, limits can be imposed on the number of iterations
and the total number of interpolation points (n,).

In the fluid dynamics problem on a flow in a supersonic overexpanded nozzle, the line ¢ =
= {(argming p(z, ¢«), vx) € I': 0 < . < 27} divides the set of interpolation points €2 into I';, where
p = p(x) is the axial symmetry region, and I'y, where p = p(z, ¢) (Fig. 3-5, a).

Let us apply the adaptive algorithm to the pressure interpolation for the considered fluid-
structure interaction problem. At the first step, we apply it to the layers to which the set of
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Fig. 3. Pressure distribution: (a) adaptive distribution with ng = 9600; (b) e~ I71%: (¢) 1 — ||z|

interpolation points is divided, i.e. we reduce the set of interpolation points along the coordinate x.
Thus, from all the layers we leave the minimum number of layers satisfying the error of interpolation.
At the second step, we apply this algorithm to each remaining layer to select the interpolation points
with the largest error in the coordinate ¢. Thus, we reduce the number of the interpolation points
preserving the interpolation error.

Adaptive algorithm for selecting interpolation points

Let us

1) select an initial set of layers and solve A~ = b for n, init points;

\)

form and solve the linear system of the interpolation coefficients for the initial layers A~ = b;

w

e

compute the residual vector or find errors E(x) = p(x) — pa(x);

)
)
) evaluate the interpolant at all ng data points pe = A~;
)
5)

check the stopping criteria, and if they are not satisfied, increase the iteration count and add
new points with the largest error E(x).

The adaptation is successfully completed if the residual is smaller than the given tolerance.

In addition to the pressure p = p(z, ¢) determined on {2, the gradient grad p is also known. It
is used as an indicator of the addition of interpolation points. Layers and interpolation points are
added to the minimal set of points when they are located in regions of the largest gradient.

In the absence of any additional information on the distribution of the interpolated data (e.g.,
in the case of the pressure interpolation it is a gradient), the indicator of the interpolation error is
formed on the basis of local basis functions or by the IDW method.

Table 1 shows the error of the pressure interpolation using the adaptive distribution of interpo-
lation points. It should be noted that the adaptive choice of interpolation points increases of the
condition number of the matrix of the system of equations (1.4), and, thus, the iterative solution
process converges slowly.

The adaptive distribution of the interpolation points using the local basis function 1 — ||z|| sub-
stantially reduces the error for any number of interpolation points, and another local basis function
(1 — ||z]|)? has a large error for a small number of points. The Gaussian global function (Fig. 5, b)
shows good results for a small number of the adaptively chosen points ng = 960.

§ 3. Matrix-free solution of interpolation problem on GPU

One of the specific features of the system (1.4) is a dense matrix, which imposes some restrictions
on the GPU use due to the small capacity of the available GPU memory. The problem can be resolved
by (i) using several GPUs, thereby increasing the total memory available for the system solution;
(ii) solving the system of equations without the formation of a matrix (Matrix-Free Algorithm or
MFA). In this case, the matrix elements are computed as they are required in the algorithm of the
system solution. The solution of the system by the RBF method is possible without the formation of
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Fig. 4. Pressure distribution: (a) adaptive distribution with ng = 5760; (b) e~ 1=I”: (¢) 1 — ||z|

(a) () ©

Fig. 5. Pressure distribution: (a) adaptive distribution with ng = 960; (b) e~ I#II*; (¢) 1 — ||z||

a matrix. since the matrix elements are computed by the chosen basis function. This improves the
data locality and arithmetic intensity for matrices and vectors. The memory requirements and CPU-
GPU communications are reduced. The efficiency of the algorithm can be improved if multi-GPUs
are used in the similar way to that in [10].

Let us consider in more detail the MFA computing expenses. Table 2 shows the time of the
sequential and parallel formation of the matrix A of the system (1.4). In the MFA, the formation
time is excluded. For comparison, the time of the solution of the system with an assembled matrix is
given. The time of copying the matrix A of the system (1.4) to the GPU memory is also presented.
In addition, the time is given for solving the system with the use of both the algorithm with an
assembled matrix and the matrix-free solution algorithm.

The CPU parallelization is carried out with OpenMP. The solution of the system of equations
on several GPUs is carried out by CUDA in conjunction with OpenMP. The system of equations is
solved by the conjugate gradient method with the diagonal preconditioner [10]. The precision is equal
to 1075, In the computations, double-precision arithmetic is used. The analysis and performance
estimations are performed on a computing node consisting of 2xquad-core Intel Xeon processor
E5-2609, 2 x GeForce GTX 980 with 4Gb GDDR.

When the system of equations is solved using the assembled matrix on the CPU, the step of the
matrix formation is added. The use of GPU increases the cost due to the necessity of copying the
data to the GPU. When the system is solved using the MFA the cost is not increased because there
in no need to copy the data. In the last line of Table 2, the total time is given for each of the above
approaches.

The numerical computations show that the use of eight CPU threads within one computing node
reduces the solution time almost by a factor of seven. One GPU allows to speed up solving the
system by a factor of 250 compared with one CPU thead and by a factor of 50 compared with
8 x CPU. The GPU efficiency increases with the increase of the system size. Using two GPUs
reduces the time by a factor of 1.5 compared with one GPU and by a factor of 350 compared with
the CPU. With an increase in the number of GPUs, the strong scalability can be provided only when
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Table 2. The execution time of the interpolation for e*”:’JHQ, s

Number of equation
960 9600 19200 28800
1 x CPU 0.098 5.655 33.91 60.85

Forming A 8§ x CPU 0.018 0.907 6.166 12.16
MFA 0.0 0.0 0.0 0.0
1 x GPU 0.009 0.312 0.842 —
Copy of A to GPU 2xGPU 0.006 0.125 0.433 1.393
MFA 0.0 0.0 0.0 0.0

1 x CPU 3.343 5928 4732 10359
8§ x CPU 0.271 86.82 946.6 2273
1 x GPU 0.288 2.282 1211 —
2x GPU 1.262 2354 8.643 16.19
Matrix-free algorithm
8 x CPU 1.712 2495 1489 4492
1 xGPU 0471 14.01 9159 191.1
2x GPU 1.226 8.664 47.03 95.58
1 x CPU 3.438 598.5 4765 10419
8§ x CPU 0.288 86.82 952.7 2285
1xGPU 0317 3.53 19.12 —
2xGPU 1283 338 1524 29.74
Matrix-free algorithm
8§ x CPU 1.712 249.6 1489 4492
1 xGPU 0472 14.01 91.59 191.1
2x GPU 1.226 8.664 47.03 95.58

System solution Ay =b

Total time

the sizes of the submatrices on each GPU are preserved.

The matrix-free solution of the system using 8 x CPU reduces the solution time by a factor of
2.5. However, the solution with the assembled matrix is twice as fast as the matrix-free solution.
When one GPU is used, the time for the matrix-free solution of the system of equations is 5 times
larger than that for the solution with the assembled matrix, and in the case of using two GPUs,
the matrix-free solution is 3 times longer. The speedup obtained at the use of one CPU thread is
55 times smaller than that when using one GPU and 110 times smaller than that when using two
GPUs. It should be noted that the use of local basis functions with an introduced radius of influence
increases the MFA efficiency.

Let us estimate the maximum size of the system, which can be solved using the MFA on a one
GPU. For the matrix A formation, the coordinates of the interpolation points are used. Then
for interpolation in a three-dimensional space, it is necessary to allocate memory for the vector
of coordinates of length equal to ng x 3. The required memory size for solving the system with
the assembled matrix is ng X ng. The remaining vectors participating in the conjugate gradient
method coincide for both algorithms. Thus, the memory size for interpolating the mesh data in the
three-dimensional space is decreased by a factor of ng/3. The maximum system size solved by the
MFA increases by the same factor. The algorithm of the conjugate gradient method with a diagonal
preconditioner involves the use of memory to store a matrix of size ng x 3 (the MFA) and six vectors
ngo % 1. Thus, for solving the system using the MFA and double precision arithmetic, ng x (346) x 8
bytes are required. Consequently, the maximum size of a system for the GPU with a 4Gb GDDR
is about 6 x 10% equations. Using two graphics cards, the possible size of the system is increased to
1.2 x 10° equations. Thus, for the dense matrices obtained on the basis of global basis functions,
a parallel method of conjugate gradients is constructed. The computations are distributed among
several GPUs. The use of the matrix-free approach makes it possible to remove any limitations on
the amount of memory.
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§ 4. Conclusion

We propose an algorithm for constructing a uniform distribution of interpolation points on an
unstructured mesh in the interpolation based on RBF. For solving the problems on unstructured
meshes, the adaptive algorithm is proposed for sampling the data for the interpolation based on the
RBF method. The obtained results show that the interpolation on the uniformly distributed data
is of high quality and applicable for meshes of super-large dimensions. The use of the adaptive data
reduction based on the layer-by-layer partition of the mesh makes it possible to reduce the number
of interpolation points, but requires additional information about the data. At the same time, the
quality of the interpolation for the irregularly-spaced data is preserved both for global and for local
basis functions. Using a matrix-free algorithm on large meshes significantly reduces the memory
costs associated with the formation of the interpolation matrix. At the same time, the computation
locality of the matrix-vector product computations increases when solving the system of equations
by iterative methods. The solution of systems with dense matrices by the MFA on the CPU does
not lead to any significant time reductions. Since the time of the matrix formation is less than 1%
of the solution time, the use of the MFA in conjunction with the CPU is inefficient. The matrix-free
approach is most effective when using a GPU, especially when it is not possible to achieve a large
reduction of points without the interpolation quality loss. Using a GPU for solving larger systems
of equations allows minimizing the cost of additional computations associated with the formation of
the matrix elements.

A further increase in the efficiency of the MFA is associated with a decrease in the number
of iterations of the algorithm for solving the system of equation by constructing effective parallel
preconditioners and by using local basis functions with the radius of influence.
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IMTapasieabHasi MeKCEeTOUHAs WHTEPIOJANNAS PagAalbHBIMU 6a3sucHbIMU (DYHKIUAMU [IPU pe-
IIIEHUN COMPSI>KEHHBIX 3a/aq9

Hwurara: Hssecmua Hncmumyma Mamemamury t UHGOPMAMUKY YOMYPMCcroz0 20cydapcmeentozo yYHu-
eepcumema. 2018. T. 51. C. 42-51.

Karouesoie cao6a: mapaniebHbe BRIYUCICHUS, THOPUIHBIE IAT(OPMBI, COMTPSIKEHHAbIE 331491, PAIAAIHHBIE Oa3nc-
Hble YHKINH, IOCTORHOE Pa3ie/eHue.

YIOK: 519.63, 530.145.6
DOT: 10.20537/2226-3594-2018-51-02

IIpn MOmEeMPOBAHUE COMPSKEHHON 331a91 B3ANMO/IEHCTBUSA KUIKOCTH /Ta3a u 1edhOPMUPYEMOrO TBEPIOTO TeIa B Pa3-
JeJIEHHOM TTOCTAHOBKE KayKIas W3 337a9 PENIaeTCsl HE3aBHCHMO, C WCTOJJIH30BAHUEM COOCTBEHHONW pPACUYETHON CETKH.
O6BI‘{HO pacYeTHbIe CeTKA (1)I/I3I/I‘IGCKI/IX 3ada49 dB/IAETCAd HEeCOIVJIaCOBaAHHBIMU, IIO3TOMY BO3HUKAET HeO6XO,I[I/IMOCTb WH-
TepronmpoBanus (PU3MIECKUX JAHHBIX (IABJICHAs, TIEPEMENEHUs) Ha TPAHUIE CONPAKEHUA MEXKIy JIBYMs PacdeT-
HBIMU ceTKamu. B Hpe,Z[CTaBHeHHOﬁ CTaThe paCCMAaTPUBACTCA COKPallleHUE 3aTpaT WHTEPIIOJIAIINU Ha OCHOBE MeTOoda
paauaabHBIX 0A3UCHBIX (DYHKIUN C UCIIOTH30BAHIEM 0E€3MATPUIHOTO PENIeHns] CHCTEMbI YPaBHEHHUH Ha rpaduIecKumx
mporeccopax. KpoMme Toro, mpeacrapieH aJalTUBHBINA aJrOPUTM BbIOOPaA TOYEK MHTEPIIOIIINH, TO3BOJISIONINNA COKPa-
TUTHh pa3Mep CUCTEMBI YPAaBHEHWIl ¢ cOXpaHeHweM KadecTBa muTeprossmyu. OueHka 3(p@eKTUBHOCTN COKpAIEHUS
BBIYHUC/IUTENbHBIX 3aTPaT Ha OCHOBE 663ME‘LTPI/I“IHOI‘O IIOAXO0Oa pelreHud CUCTEMBI, a TaKzKe OIl€eHKa Ka4YeCTBa MHTEPIIO-
JIAITUA OCYINECTBJIAJINCH Ha TPpUMEpe 3aJa1i MOIE/JIUPOBAHUA MUCTEYUYEHUA MOTOKa ra3a U3 CBEPX3BYKOBOTO I[e(i)OpMI/I—
pyemoro coruia.
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