УДК 517.977

© В.В. Лукьянов

СТРУКТУРА ГРАНИЦЫ МНОЖЕСТВА УПРАВЛЯЕМОСТИ ЛИНЕЙНОЙ ДОКРИТИЧЕСКОЙ СИСТЕМЫ С ВЕКТОРНЫМ УПРАВЛЕНИЕМ 1

Рассматривается задача быстродействия в нуль с закрепленным левым концом. Динамика управляемого процесса описывается линейной нестационарной докритической системой с векторным управлением. Получено представление границы множества управляемости системы в виде объединения попарно непересекающихся гладких многообразий различной размерности.

Ключевые слова: линейная управляемая система, докритическая система, множество управляемости.

Рассмотрим линейную нестационарную задачу быстродействия в нуль

$$\dot{x} = A(t)x + B(t)u,$$
 (1)
 $x(t_0) = x_0, \quad x(t_0 + T) = 0, \quad T \to \min,$

где функции $A: \mathbb{R} \to \mathbb{M}(n,n)$ и $B: \mathbb{R} \to \mathbb{M}(n,r)$ непрерывны. Множеством допустимых управлений \mathcal{U} будем считать совокупность всевозможных измеримых функций $u: \mathbb{R} \to U = [-1,1]^r$.

Зафиксируем некоторую фундаментальную систему решений $\psi_1(t), \dots, \psi_n(t)$ сопряженной системы $\dot{\psi} = -\psi A(t)$ и определим семейство непрерывных функций

$$\xi_i^j(t) = \psi_i(t)b^j(t), \qquad i = 1, \dots, n, \quad j = 1, \dots, r,$$

где $b^j(t)$ — столбец матрицы B(t) с номером j. Для фиксированных чисел $t_0 \in \mathbb{R}$, $\sigma > 0$ и ненулевого вектора $c = (c_1, \ldots, c_n) \in \mathbb{R}^n$ обозначим $n_j = n_j(c)$ — количество геометрически различных корней функции $\xi^j(t;c) = c_1 \xi_1^j(t) + \ldots + c_n \xi_n^j(t)$ на интервале $I_{t_0} = (t_0, t_0 + \sigma)$. Обозначим через $\sigma(t_0)$ точную верхнюю грань таких $\sigma > 0$, что на интервале I_{t_0} при любом ненулевом $c \in \mathbb{R}^n$ выполнено неравенство $n_1(c) + \ldots + n_r(c) \leqslant n - 1$. Если для любого положительного σ существует ненулевой вектор $c \in \mathbb{R}^n$, для которого на интервале I_{t_0} выполнено неравенство $n_1(c) + \ldots + n_r(c) \geqslant n$, то положим $\sigma(t) = 0$. Функция $\sigma(\cdot)$ не зависит [1, c. 118] от выбора фундаментальной системы решений $\psi_1(t), \ldots, \psi_n(t)$.

О п р е д е л е н и е 1 (см. [1, с. 119]). Систему (1) будем называть докритической в точке $t_0 \in \mathbb{R}$, если выполнено неравенство $\sigma(t_0) > 0$.

Для любого момента времени $t_0 \in \mathbb{R}$ и любого неотрицательного θ определим множество управляемости $D(t_0, \theta)$ на отрезке $[t_0, t_0 + \theta]$:

$$D(t_0, \theta) = \bigcup_{u(\cdot) \in \mathcal{U}} \int_{t_0}^{t_0 + \theta} X(t_0, s) B(s) u(s) ds,$$

где X(t,s) — матрица Коши однородной системы $\dot{x} = A(t)x$.

Далее будем предполагать, что управляемая система (1) докритическая в точке t_0 . Положим $\mathfrak{N}=\{(\mathfrak{n}_1,\ldots,\mathfrak{n}_r)\in\mathbb{Z}_+^r:\mathfrak{n}_1+\ldots+\mathfrak{n}_r\leqslant n-1\}$. Для каждого вектора $\mathfrak{n}=(\mathfrak{n}_1,\ldots,\mathfrak{n}_r)\in\mathfrak{N}$ обозначим $c(\mathfrak{n})=\{c\in\mathbb{R}^n\setminus\{0\}:\mathfrak{n}_1=n_1(c),\ldots,\mathfrak{n}_r=n_r(c)\}$, где $n_j(c)$ — количество нулей функции $\xi^j(t;c)$ на интервале $(t_0,t_0+\sigma(t_0))$, и определим множество

$$\Lambda_{t_0}^{\mathfrak{n}} = \bigcup_{c \in c(\mathfrak{n})} \left\{ \left(\delta_1(c), \dots, \delta_r(c) \right) \right\}, \quad \text{где} \quad \delta_j(c) = \lim_{t \to t_0 + 0} \operatorname{sign} \xi^j(t; c).$$

Для каждого вектора $\mathfrak{n}=(\mathfrak{n}_1,\ldots,\mathfrak{n}_r)\in\mathfrak{N}$, каждого вектора $\delta=(\delta_1,\ldots,\delta_r)\in\Lambda_{t_0}^{\mathfrak{n}}$ и любого $\theta>0$ обозначим через $\mathfrak{U}^{\mathfrak{n}}_{\delta}(t_0,\theta)$ совокупность всевозможных кусочно-постоянных непрерывных

 $^{^{1}}$ Работа поддержана РФФИ (грант № 12–01–00195).

справа функций $u \colon \mathbb{R} \to U$, тождественно равных нулю вне интервала $(t_0, t_0 + \theta)$; каждая координатная функция $u_j(\cdot)$ на интервале $(t_0, t_0 + \theta)$ принимает значения ± 1 и имеет ровно \mathfrak{n}_j переключений, а δ_j — значение функции $u_j(\cdot)$ в правой окрестности точки t_0 . Множество $\mathfrak{U}^{\mathfrak{n}}_{\delta}(t_0, \theta)$ является многообразием размерности $\mathfrak{n}_1 + \ldots + \mathfrak{n}_r$. На множестве допустимых финитных управлений \mathcal{U} определим отображение $F_{t_0} \colon \mathcal{U} \to \mathbb{R}^n$ с помощью равенства

$$F_{t_0}(u) = -\int_{t_0}^{+\infty} X(t_0, s) B(s) u(s) ds.$$

Положим $N_{\delta}^{\mathfrak{n}}(t_0,\theta) = F_{t_0}(\mathfrak{U}_{\delta}^{\mathfrak{n}}(t_0,\theta)).$

Формулируемая ниже теорема дополняет исследования работ [2-4].

Т е о р е м а 1. Пусть система (1) докритическая в точке t_0 . Тогда для любого положительного $\theta \leqslant \sigma(t_0)$ граница $\partial D(t_0,\theta)$ множества управляемости системы (1) может быть представлена в виде

$$\partial D(t_0, \theta) = \bigcup_{\mathbf{n} \in \mathfrak{N}} \bigcup_{\delta \in \Lambda_{t_0}^{\mathbf{n}}} N_{\delta}^{\mathbf{n}}(t_0, \theta),$$

где $N^{\mathfrak{n}}_{\delta}(t_0,\theta)$ — это гладкие попарно непересекающиеся многообразия без края, имеющие размерность $\mathfrak{n}_1+\ldots+\mathfrak{n}_r$. Для любой точки $x_0\in N^{\mathfrak{n}}_{\delta}(t_0,\theta)$ существует оптимальное кусочно-постоянное управление $u(\cdot)\in\mathcal{U}$, переводящее точку x_0 в нуль за минимальное время θ ; каждая координатная управляющая функция $u_j(\cdot)$ на промежутке $(t_0,t_0+\theta)$ принимает значения ± 1 и имеет ровно \mathfrak{n}_j переключений, а $\delta_j\in\{-1,1\}$ — значение функции $u_j(\cdot)$ от момента начала движения t_0 до первого переключения (до конца движения, если переключений нет).

Список литературы

- 1. Лукьянов В.В. Двухпараметрические Т-системы функций и их применение для исследования оптимальных по быстродействию линейных нестационарных управляемых систем // Вестник Удмуртского университета. Математика. Механика. Компьютерные Науки. 2009. Вып. 1. С. 101–130.
- 2. Тонков Е.Л. Неосцилляция и число переключений в линейной нестационарной системе, оптимальной по быстродействию // Дифференциальные уравнения. 1973. Т. 9. № 12. С. 2180–2185.
- 3. Тонков Е.Л. Неосцилляция и структура множества управляемости линейного уравнения // Успехи математических наук. 1983. Т. 38. Вып. 5 (233). С. 131.
- 4. Николаев С.Ф., Тонков Е.Л. Структура множества управляемости линейной докритической системы // Дифференциальные уравнения. 1999. Т. 35. № 1. С. 107—115.

Поступила в редакцию 14.02.2012

V. V. Luk'yanov

The structure of the boundary of the controllability set of a linear subcritical system with vector-valued control

The time-optimal problem of reaching the origin for a linear nonstationary subcritical system with vector-valued control is considered. It is proved that the boundary of the controllability set is a union of pairwise disjoint smooth manifolds of various dimensions.

Keywords: linear control system, subcritical system, controllability set.

Mathematical Subject Classifications: 34H05

Лукьянов Владимир Викторович, старший преподаватель, Удмуртский государственный университет, 426034, Россия, г. Ижевск, ул. Университетская, 1. E-mail: lkv-2010@mail.ru

Luk'yanov Vladimir Viktorovich, Lecturer, Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia