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A LINEARIZED DIFFERENCE SCHEME FOR A CLASS OF FRACTIONAL
PARTIAL DIFFERENTIAL EQUATIONS WITH DELAY'!

A class of non linear fractional partial differential equations with initial and Dirichlet boundary conditions is under
consideration. We seek to obtain numerical solutions for this considered class of equations based on finite difference
method. The convergence order will be 2 — « in time and four in space. A numerical example is given to support the
theoretical results.
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Introduction

A great significance is devoted to study delay differential equations. They are widely used in
many fields of science such as economics, physics, ecology, medicine, transportation scheduling, en-
gineering control, computer aided design, nuclear engineering. They play a very important role in
describing a variety of phenomena in the natural and social sciences. Also Fractional order differ-
ential equations, as generalizations of classical integer order differential equations, are increasingly
used to model problems in fluid flow, finance and other areas of application. In [4,5]|, numerical
approximations for some different classes of fractional differential equations were discussed. There
are many contributions in literature which deals with obtaining numerical solutions of space—time
fractional partial differential equations such as [6]. This paper presents a practical linear difference
scheme for solving space—time fractional partial differential equation with time delay. This linear
difference scheme is applied previously for for a class of nonlinear delay partial differential equa-
tions [1,7]. In this approach, we extend this idea to time and space fractional partial differential
equation with nonlinear delay.

@—d&:f(xtu(xt)u(xt—s)) a<z<b tel0,T] (0.1)
ot OzP G ’ ’ Y '

u(a,t) = uq(t), wu(b,t) =up(t), te]l0,T], (0.2)

u(z,t) = p(x,t), =€ la,b], te][-s,0), (0.3)

where 0 < @ < 1,1 < 8 < 2, d > 0 is the diffusion coefficient and s > 0 is the delay parameter.
Throughout this work, we suppose that the function f(x,t, u,v) and the solution u(z,t) are suffi-
ciently smooth and assume that f(z,t, u,v) has the first order continuous derivative with respect
to the first and second components in the €y neighborhood of the solution such that ¢g is a positive

constant. Let ¢ max | u(z,t) |, ¢ g pax | fu(u(z,t) + €1, u(x,t — s) + €2, @, 1) |,
0<i<T le1]<eo,|e2|<eo
cp = max | fulu(z,t) + €1, u(z,t — s) + eg, x, 1) |.

a<xz<b,0<t<T
le1]<eo,le2]|<en

§ 1. Derivation of the linearized difference scheme
Take two positive integers M and n, and let h = bfwa, 7 = 2 such that x; = a +ih, t;, = k7 and
tprr = (k+ %)T = %(tk +tgs1). Cover the domain by Qp, = Qp x Q,, where Qp, = {2;]0 <i < M},
2
Q ={thl| —n<k<N}, N=[ZLl. Let W={vjyv=0vF0<i<M-n<k<N}beagrd

. k3 1,k k+1
function space on ;. Define v; > = (v +v77).
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Kartary and his group [3] obtained the following approximation for the time Caputo fractional
derivative at 7, e
2

0%u(ty, 1,2;) k-1 uft gk
Ta? = {wluk + rnz:l(wkm+1 — kam) — Wku + 0-(217_@@) + O(T2ia), (1_1)
h that
suc a . 1 - . 1 - 1 1
wZ:U((Z+§) —(1—5) ), g = m P 0<Oé<1 (12)

Also, Sun and his group [2] presented the following averaging operator

Av,, :cgy(w—h)—i—(l—ch)u(x)—i—cgy(w—i—h), l<pg<2 (1.3)
It is easy to verify that
Av(z) = (1 + Sh262)v(x). (1.4)
Also,
AL v(@) = 82u(a) + O (1.5
587 (@) = dxv(z , .

Bv(a) = ( (z + h) — 2v(z) + v(z — h)),

Pu(z) = 7B wal/(az — (k—=1)h) + O(h?),
k=0

where wy = Mgy, w) = Mg) + Xogy, W) = Mgl + Xogp_, + A1 o k =2,

B2 +38+2 4 - B2 B2-38+2 5 —B+B+2
)\1 = T aa )‘0: 9 )‘—1 = T a8 02 Y
12 6 12 24

g+1
f=1 g=a-2thg

They proved some properties concerned with the averaging operator 2
QAu,v) = (u,Av), |v|5 = @, v),

vl
3

Remark 1. Riemann-Liouville and Caputo operators have the following property

<l < vl (8Fv,v) <.

m—1
rD{u(x,t) = . ;Ofqulfa)U(k)(x’O)’ m—-1l1<a<m, m=123,.... (1.6)
According to (1.1) and the property (1.6), we can write Kartary approximation 0 < a < 1 at the
points ¢, 1 as follows
2

= i (™ —
rD{u(wisty 1) = [wlu +7;(wkm“_wkm)um+<l“(17—2)_w >u —1—0217 +0(r*7).
(1.7)
Consider Eq.(0.1) at the points (7, 1), gives
2
0%u(wi,ty 1) 85u(ﬂ:i,tk+;)
oo 2~ —d 928 - = f(xi’thr%’u(xi’tk+%)’u(xi’tk+% - S))a (18)

0<i<M, 0<k<N-L.
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Remark 2. Taylor expansion yields

8ﬁu(zi,tk+%)

0 (o g
oxb T 0x? (I (xi’thr%))’ (1.9)
OPulwi,tyy1) 1,02 ,_ 02
S . B . = 2B ) 2
s = (5 Pl t) + 5 PPl b)) + O, (1.10)
OPu(wi,ty)  OPulzy,trs) 5
5( L ) £ 0(r). (1.11)
Remark 3. Taylor expansion yields
(@i, tpp 1) uf+% >~ —y — lu Lo, (1.12)
(@i typs —8) = uf7n+% = %ufﬂ_" + %uf_" + O(7%). (1.13)
After substitution with (1.7), (1.11), and (1.12), (1.13) into (1.8), we obtain
k—1 e nas k
k+ us
[Wluf + Z(wkferl - wkfm)u;‘n + <F(17—2) —w >u + O’%] —
m=1
c_i(@ﬁu(mi,tk) n 3ﬁu($i,tk+1)> B
2 ozP OxP N
S el o Lok 2— 2
- f<xl-,tk+2, Sul — Sl Sul T sl ") +O(r2) + O(+2), (1.14)
such that

0<i<M, 0<k<N-1.

By Operating with the averaging operator 2l on both sides of (1.14), we have

k—1

k t’:+ (uft! —uf)
Ql{mui + mZ:l(wka — Wh—m Uy + (rj) —w >u + 0217—04@ _

OB OB ):
3 1 1 1
:Qlf(xi,thr%,iuf—zuf ! ) 5 f“ "4 uk "

) +0(r*) + O(r). (1.15)
Recall the properties of the averaging operator 2 (1.3)7(1.5) then (1.15) can be written as follows

k-1

. tki‘_ (W1 — b
Ql{wwi +mzl(wkm+1 — wk,m)ugn + <ﬁ — wk)u + 0'217_042 =
5k+2 3 & 1k11k+1n1k—n 2« 2 4
=do,u +2lf<m,~,tk+l,— L AL +5u; )+O(T )+O(m%)+O(h"). (1.16)
Then, we can write
k—1 t k+1 k
& k—i—— 0 (U U; )
2[|:W1Ui +mz:1(u.)km+1 —wk,m)Uim—i— <ﬁ )U +0'217—al} =

1 3 1 1 1

= aPU 1y (xi,thr%, SUF - SUFTL SURT §Uf_") + R, (1.17)
such that
1<i<M—1, 0<k<N-1,
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and
| BE I e (727 72 4+ 1))

Noting that the initial and boundary conditions after partition will be:
UF = uq(ty), Uk =uy(ty), 1<k<N, (1.18)
UF = p(zi,tp), 0<i<M, —n<k<O. (1.19)

Omit the small term R¥ in (1.18) and replace UF with u¥, the constructed linear difference scheme
will have the following form

k S m t’ff— (uit! — uf)
Ql{wlui + mz_l(wk_mH — Wh—m) UL+ (m — Wk)u +o 5ia } =
= d5£uf+% + Qlf(xi,tk+ , g uf — ;uffl, %uf‘q*” + %u;“"), (1.20)
such that
1<i<M-1, 0<KkSN-1,
ulg = ug(ty), uk;=uwup(ty), 1<k<N, (1.21)
=p(zity), 0<i<M, —-n<k<O. (1.22)
Remark 4. When 8 = 2, (1 20) coincides with the the linear difference scheme for the time fractional

partial differential equation Wlth delay

%u  0%u
e d@ = f(z,t,u(z,t),u(z,t —s)), a<xz<b, tel0,T], (1.23)
u(a,t) = uq(t), u(b,t) =up(t), te][0,T], (1.24)
u(z,t) = p(z,t), x€la,b], tec][-s,0), (1.25)

where 0 < a < 1, d is the diffusion coefficient and s > 0 is the delay parameter.
And the resulted difference scheme will have the form

k—1 Y k+1 k
k+i u; ' — uk
A[Muf + Z(wkferl — W)Uy <F(17—2a) —wk)u +U( ol—a Z)} =
m=1
2k+ 3k1k11k+1 Lo
= do2urt? +Af<xi,tk+%,§ o Sub T Sul T "). (1.26)

The averaging operator A will have the following form

Av(z) = (1 + Ah*2)v(z) = (1 + %hQ(si)l/(.%') = csv(z —h) + (1 — 263)v(x) + v(z + h) =

= 1—12<1/(x —h)+ 10v(x) —}—y(x—i—h))-

Remark 5. If we replace the averaging operator 2 by the unit operator I, then we obtain the following
2 — « order in time and second order in space difference scheme

t k+1 k
m k43 ( i _ui)
{wl’u?—f—mz_l(wk—m-i-l — W—m)u;" + (ﬁ —wk)“?JfU 2i—a } =
_ 858,k ( 1§k_1kllk+1nll_c—n) L9
ddu; 4 flai,ty, S5 T QU U +oui "), (1.27)
such that
1<i<M-1, 0<k<N-1,

ul = ua(ty), ub;=wup(ty), 1<k <N, 1.28)
uf = p(xi,ty), 0<i<M, —n<k<0 (1.29)
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§ 2. Convergence and stability of the proposed scheme

Denote ef = UF—uF, 0<i< M, —n<k< N andsubtract (1.20)—(1.22) from (1.17)—(1.19),
we obtain the error difference scheme

e (ek“ k

k
T3 )—wk>e +o

k—1
ﬂ[wlef + mz:l(wkarl — wk,m)elm + (m

21—a

3 3 1 1 1
::d6§€f+2 +_Qkf[<xhtk+l,—ljf<— _[]k*l,_ljk+lfn/+_§l]f7n> B

3 1 1 1
—f(xi,t,H_ ,2uf—§uf 1 gufﬂ ”—i—QuZC ")} —|—Rf, (2.1)
1<i<M-1, 0<k<N-1,
e =0, ek, =0, 1<k<N, (2.2)

¥ =0, 0<i<M, -n<k<O0. (2.3)
If the spatial domain [a, b] is covered by Q5 = {z; | 0 < i < M, } and let
Vi ={v|v=(w,...,vm), v =vy=0}

be a grid function space on Q.
For any u,v € Vj, define the discrete inner products and corresponding norms as

M—1 M
(u,v) = h Zl uiVi, (0pu,0yv) = hzl(ézui;)(ézl/i;),

and

lull=Viwa), | uh= V), |l max |l

The following inequalities are achieved

vb—a b—
Tl ——Tul, lull< 75 “uy. (2.4)
Lemma 2.1. For any u € V},, it holds that
k—1 Y k+1 k
k+1 (w; ™" —u¥)] kel
(2t fered +ﬂ;<wkmﬂ‘“km>u§”+<ﬁ‘“k)“ tot ) >
g k k
> s (b 1R = b 1)

Lemma 2.2 ([7]). Suppose that {F* | k > 0} be a non negative consequence and satisfies
FFMUC A4 BrY W FE, k=0,1,..., then F*' < Aexp(Bkr), k=0,1,..., such that A, B
are non negative constants.

For the difference scheme (1.20)—(1.22) and by using the previous lemmas, we can deduce the
following convergence result.

Theorem 2.1. Let u(z,t), =€ [a,b], —s<t<T be the solution of (0.1)~(0.3) and {ul |
O i< M, —n<k< N} bethe solution of the conszdered difference scheme (1.20)—(1.22), denote
e Uk—uk 0<i<M, —n<k<N and

o= M\/b—ac exp(M2(1oe2+5c$+c§)) E: 1
€ ’ 6e2 ’ 3TT(2 — )22

then if

1 1

€0 \ 2—a €\ 17

< |— < (=

TS (40) » h< <4C) ’

we have
| e llo (727 +1%), 0< k<A, (2.5)
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To discuss the stability of the difference scheme (1.20)—(1.22), we use the discrete energy method
in the same way like the discussion of the convergence. Let {yf |0<i< M, 0<k< N} bethe
solution of

5> fers ! —vh)
Ql[wlvi + ) (Wk—mt1 — Wk—m)V]" + <72 _Wk)V + ot — ] =
= 'l —a) 21—«
3, 1,1, 1,
= doPuk +Qlf(xi,tk+%, oY vk — Y ! ) 5V tlmn Vi "), (2.6)

such that

where ¢F is the perturbatlon of p(x;, tr).

Theorem 2.2. Let nf = vf —uf, 0<i< M, -n<k<
c7, ¢, hg, 79 such that

0
I o< erm D 16", 0<k<N, | |=
k=—n

only if

h<hy, 7<m
and

max_| ¢ |< cs.

—n<k<0
o<i<M

§ 3. Test example

Consider the following time-space fractional partial differential equation with delay

% — % = f(z,t,u(z,t),u(z,t —0.1)), 1l<z<2, te(0,1], (3.1)
w(l,t) = ;—?;1(153 “ot—1), w(®2t) =0, te(0,1], (3.2)
u(z,t) = 57 b _)#* -2t —1), x€(1,2), te[-0.1,0), (3.3)

(
where 0 < a < 1, 1<B<2,

f(x,t,u(z, t), u(z,t —0.1)) = u(z,t —0.1)% — 2& + & — (ixG —x)?((t—0.1)> = 2(t — 0.1) — 1)?,

32
such that LT r)
Y e SO/ B Gl S YO S V|
D) s 202 a1
— 7t [ 7t e} _ _ .
=Faa re—a! N3pv -2
The exact solution is 1
u(z,t) = (§x6 —x)(t3 -2t —1).
Let u¥ | 0 <i < M,0 < k < N is the solution of the constructed difference scheme (1.20)—(1.22),

define the maximum norm error

.k
Ex(h,7) = Jmax | w(zq, ) — uy |-
0<k<N

In the following table, we present the maximum errors for different numerical solutions obtained
with different step sizes when (o = 0.1, 8 = 1.9).
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FEoo(h,
h| 7 Es(h,T) log, _Ew(h(2,7)4)
1 1 —
1| 10 3.25 x 10~° 3.96578
» | 1 2.08 x 1076 3.98894
1 -7
B | T 1.310 x 1079 3.99516
20 | gag | 8215 x 10 *

§ 4. Conclusion

This work is related to a class of fractional partial differential equations with non linear delay.
A linearized difference scheme was constructed to solve this sort of equations. Un conditional
convergence and stability for the numerical difference scheme were proved. A numerical example
supported our theoretical results. Our difference scheme can be easily applied for two dimensional
delay problems with fractional orders.
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