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ANALYSIS OF STOCHASTIC SENSITIVITY OF TURING PATTERNS

IN DISTRIBUTED REACTION–DIFFUSION SYSTEMS

In this paper, a distributed stochastic Brusselator model with diffusion is studied. We show that a variety

of stable spatially heterogeneous patterns is generated in the Turing instability zone. The effect of random

noise on the stochastic dynamics near these patterns is analysed by direct numerical simulation. Noise-

induced transitions between coexisting patterns are studied. A stochastic sensitivity of the pattern is

quantified as the mean-square deviation from the initial unforced pattern. We show that the stochastic

sensitivity is spatially non-homogeneous and significantly differs for coexisting patterns. A dependence of

the stochastic sensitivity on the variation of diffusion coefficients and intensity of noise is discussed.
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Introduction

Self-organization [1] is found in many natural phenomena. The mechanisms of ordered and

stable states formation are crucial in various processes studied in different fields of science [2–4].

Often, these phenomena are too complex for observation and experiment. In these cases, investi-

gation of self-organization is possible by introducing an appropriate mathematical model [5, 6].

One of the examples of self-organization is connected with Turing pattern formation in dis-

tributed reaction-diffusion systems [7, 8]. Here, the expected effect of the diffusion flux on the

system is the appearance of a homogeneous state. However, in the parametric zones of Turing in-

stability, a stable non-homogeneous state (pattern) is formed and maintained. Often, for the same

set of parameter values, the model exhibits several coexisting stable patterns. This phenomenon

of multistability was discussed in [9].

While deterministic analysis of Turing patterns is an interesting field of research by itself, the

main concern of this work is the effect of random perturbations on the system dynamics. Indeed,

real systems are always subject to disturbances of a different nature: such as Brownian motion,

solvent impurities, changing temperature or pressure. Studying stochastic models may allow to

better understand the various phenomena that take place in real systems. Noise-induced effects in

reaction-diffusion systems attract the attention of many researchers [10–13].

Mathematical modeling of stochastic processes shows the positive role of noise: in distributed

reaction-diffusion systems with random perturbations the ordered and stable states can appear. It

should be noted that different patterns respond to the perturbations in different ways: some of

them may dissipate while others are preserved. Constructive effects of random noise in nonlinear

system attract attention of many researchers [14, 15]. For the study of these effects, a new

probabilistic approach using stochastic sensitivity analysis was developed in [16–18].

In the present paper, we consider a distributed reaction-diffusion system based on the classic

Brusselator model. In this model, various scenaria of deterministic and stochastic pattern gen-

eration in this multistable model can occur. In [19], a phenomenon of noise-induced transitions

between patterns was revealed and studied on the base of modality analysis.

This work is devoted to the further development of research begun in [9,19], which introduce

the stochastic phenomena and provide the means to identify them. While previous work implies

the difference in pattern stability, the main focus of the present paper is the study and comparison

155



of stochastic sensitivity of the coexisting patterns through the means of statistical analysis and

numerical methods. For weak noise, the stochastic sensitivity of the pattern is quantitatively

defined by the mean-square deviation of random states from the initial unforced pattern. We

apply numerical modeling to show the difference in the sensitivity to noise for different patterns.

By this analysis, we explain the “preference” of system in noise-induced transitions. Finally, we

analyse the dependence of stochastic sensitivity on parameters of diffusion flow, and study the

influence of increasing perturbation intensity on the behavior of different patterns.

§ 1. Pattern formation

The distributed Brusselator model with diffusion is defined by the following system of differ-

ential equations:
∂u

∂t
= a− (b+ 1)u+ u2v +Du

∂2u

∂x2
,

∂v

∂t
= bu− u2v +Dv

∂2v

∂x2
.

(1.1)

Here, the variables u(t, x) and v(t, x) stand for the concentration of the reactants, parameters a

and b are positive, and Du, Dv are diffusion coefficients. The spatial scalar variable x varies in

the interval [0, L]. The following boundary conditions are assumed:

∂u

∂x
(t, 0) =

∂u

∂x
(t, L) =

∂v

∂x
(t, 0) =

∂v

∂x
(t, L) = 0. (1.2)

The non-distributed system (when Du = Dv = 0) has a fixed point at ū = a, v̄ = b
a
. In

the distributed system, this fixed point defines the homogeneous equilibrium – a state in which

u(x) = ū, v(x) = v̄ for every x. A parametric zone where the fixed point of the non-distributed

system is stable and the homogeneous equilibrium is unstable is called the Turing instability

zone. Instability of the homogeneous equilibrium causes formation of spatially heterogeneous

stable structures, namely Turing patterns.

In this paper, we fix a = 3, b = 9, Dv = 10, L = 40. In this case, the Turing bifurcation

value is D∗

u = 40
9

, and patterns are observed for 0 < Du < D∗

u.
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Figure 1. Examples of spatial patterns for Du = 2: 4.5-peak pattern (left), 6-peak pattern (right)

The patterns are wave-like structures, that can be distinguished by periodicity (number of

peaks) and tendency on the left edge of the spatial interval (ascending or descending). When

assigning type, we consider the u(x) component of the resulting state. Fig. 1 shows examples of

two patterns: 4.5-down pattern (left) and 6-down pattern (right). Both examples are obtained for

Du = 2.
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For numerical simulation of uj,i = u(tj, xi), vj,i = v(tj, xi), we use the following difference

scheme:










uj+1,i = uj,i + τfj,i + τDu

uj,i−1 − 2uj,i + uj,i+1

h2
,

vj+1,i = vj,i + τgj,i + τDv

vj,i−1 − 2vj,i + vj,i+1

h2
.

(1.3)

Here,

fj,i = f(uj,i, vj,i), gj,i = g(uj,i, vj,i),

f(u, v) = a− (b+ 1)u+ u2v, g(u, v) = bu− u2v,

τ = 10−4, h = 0.2, tj = jτ, xi = ih.

The system demonstrates multistable behavior: for the same parameter values, several differ-

ent patterns may be obtained depending on the initial state. For lower values of Du, there can be

up to 20 different patterns. Shape of the structure also depends on the diffusion intensity. With

decreasing Du, deviations of the system variables from the homogeneous equilibrium increase.

Moreover, every pattern has its own stability zone. Outside this zone, it cannot be obtained as at-

tractor, and will most likely appear only as a transient state. Fig. 2 summarizes these observations

by showing the extrema of u-variable of patterns in corresponding stability intervals.

Du

4 ↓ 5 ↑ 6 ↑ 4.5 ↓

u
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Figure 2. Extrema of several pattern-attractors on their stability intervals

Temporal dynamics of pattern formation is another matter worth looking into. As a mechanism

of self-organization, the phenomenon of Turing instability contributes to the establishment of

organized state from a disorganized one. If we take randomly generated state as the initial

condition, then the system will quickly organize itself to an ordered state. In the Turing instability

zone, this state is a stable spatially-heterogeneous structure.

Fig. 3 shows an example of pattern generation from a random initial state. The initial condition

is generated using uniform distribution on the interval [0, 6] around the homogeneous equilibrium

(ū, v̄) = (3, 3).
The top panel shows dynamics of a process of pattern formation started from a randomly

distributed initial condition. The horizontal axis is the temporal axis, while the vertical axis is
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Figure 3. Pattern formation dynamics for a = 3, b = 9, Du = 3, Dv = 10

spatial. Values of u(t, x) are displayed by color. The bottom figures show snapshots of u(t, x)
for three values of t. From left to right: the initial state at t = 0, a transient state at t = 2, and

almost formed pattern at t = 10. As the figure shows, the transition to the organized state occurs

quite rapidly.

§ 2. Stochastic analysis

In order to study noise-induced phenomena, the stochastic variant of the distributed Brussela-

tor model is introduced:

∂u

∂t
= a− (b+ 1)u+ u2v +Du

∂2u

∂x2
+ γ1ξ(t, x),

∂v

∂t
= bu− u2v +Dv

∂2v

∂x2
+ γ2η(t, x).

(2.1)

Here, ξ(t, x) and η(t, x) are uncorrelated Gaussian random noises with intensities γ1, γ2 and

parameters 〈ξ(t, x)〉 = 〈η(t, x)〉 = 0, 〈ξ(t, x)ξ(s, y)〉 = δ(s − t)δ(y − x), 〈η(t, x)η(s, y)〉 =
= δ(s− t)δ(y − x).

For computer simulations, we use the Euler–Maruyama scheme [20,21] for time discretization











uj+1,i = uj,i + τfj,i + τDu

uj,i−1 − 2uj,i + uj,i+1

h2
+ γ1rj,i

√
τ ,

vj+1,i = vj,i + τgj,i + τDv

vj,i−1 − 2vj,i + vj,i+1

h2
+ γ2qj,i

√
τ ,

(2.2)

where rj,i and qj,i are uncorrelated Gaussian random noises on the grid with parameters 〈rj,i〉 =
= 〈qj,i〉 = 0, 〈rj,irk,l〉 = 〈qj,iqk,l〉 = δj,kδi,l, where δj,k equals one if j = k and zero otherwise.

Here, we suppose γ1 = γ2 = γ. The method steps are τ = 10−4, h = 0.2.
For studying stochastic sensitivity of the pattern, the deviation of a perturbed structure from its

deterministic counterpart is considered. First, we obtain the pattern by modeling without random
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perturbations. Then, this pattern is used as the initial condition for the stochastic model. The

stochastic modeling is repeated a large amount of times. With this statistical data the deviation of

a pattern can be evaluated for every x as follows:

Su(x, γ) = E(uγ(x)− u∗(x))2, Sv(x, γ) = E(vγ(x)− v∗(x))2, (2.3)

where u∗(x), u∗(x) are coordinates of the initial unforced deterministic pattern, and uγ(x), vγ(x)
are results of stochastic modeling with noise intensity γ. Note, that these sensitivity functions are

obtained numerically.
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Figure 4. Analysis of stochastic sensitivity of 4 ↓ pattern for a = 3, b = 9, Du = 3, Dv = 10,
γ = 10−4

Fig. 4 shows that stochastic sensitivity Su(x, γ) is non-homogeneous: some points of the

pattern are more sensitive to noise than others. The least sensitive fragments are localised near

the pattern extrema, while the highest sensitivity is observed near the homogeneous equilibrium

(dashed line).

The next step is to study how this deviation will change depending on system parameters. For

measuring, comparing, and displaying results, the following functions are introduced:
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S̄u(γ) = max
x∈[0,L]

Su(x, γ), S̄v(γ) = max
x∈[0,L]

Sv(x, γ). (2.4)

Fig. 5 shows plots of S̄u(γ) and S̄v(γ) for changing noise intensity γ for three patterns: 5 ↑,
6 ↑, and 7 ↑. Observations imply that the dependence on the noise intensity is similar to quadratic

growth. Moreover, the response of different patterns to perturbation intensity differs. While there

is only slight difference in the growth for 5 ↑ and 6 ↑, the 7 ↑ rises sharper than the others.

This, in order, implies higher sensitivity to noise of higher intensity. As a result, the shape of this

pattern will be affected more by random perturbations.
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Figure 5. Mean square deviation for a = 3, b = 9, Du = 2, Dv = 10 versus noise intensity γ

Next, consider the dependence of stochastic sensitivity of patterns on the variation of diffusion

coefficient Du. For each pattern, there is a range of Du, for which it remains stable in the system

without noise. Therefore, varying the diffusion coefficient should affect stochastic sensitivity as

well. The results are shown in Fig. 6.
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Figure 6. Mean square deviation for a = 3, b = 9, Dv = 10, γ = 0.01 versus Du

All considered patterns have similar tendency of changing deviation depending on the inten-

sity of diffusion flow. As the Du value increases, the patterns tend to become less sensitive.

Further increase shows growth of sensitivity rate. For example, 7 ↑ can not be observed in the

deterministic system for Du ≈ 2.35, thus near this point a sharp growth is expected. In the same

manner, such incline is anticipated at Du ≈ 3.3 for 6 ↑ and Du ≈ 4.1 for 5 ↑.
Based on the study of these functions it may be possible to predict the emergence of noise-

induced transition phenomenon. Fig. 7 shows an example of 7 ↑ pattern changing into the 6 ↑
pattern, which can be explained by significant difference in stochastic sensitivity.
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Figure 7. Noise-induced transition for a = 3, b = 9, Du = 2.3, Dv = 10: transition from 7 ↑
pattern to 6 ↑, γ = 1 (left), deviation functions for γ = 0.01 (right)

§ 3. Conclusion

In this paper we studied the stochastic sensitivity of spatial patterns in the distributed Brus-

selator system. We show that the system is multistable and several patterns can coexist for the

same set of parameter values. Next, the stochastic phenomenon of noise-induced pattern transi-

tion was investigated. A scenario of transition under the influence of random perturbation was

demonstrated as an example. Mean square analysis for deviations of randomly forced patterns

was performed. It was shown that based on this analysis, one can distinguish stable and sensitive

to noise patterns and predict transitions between them.

Funding. The study was funded by Russian Science Foundation, project number 16–11–10098.

REFERENCES

1. Prigogine I., Nicolis G. Self-organization in nonequilibrium systems: Towards a dynamics of complex-

ity, Bifurcation analysis: Principles, applications and synthesis, Dordrecht: Springer, 1985, p. 3–12.

https://doi.org/10.1007/978-94-009-6239-2_1

2. Wang X., Lutscher F. Turing patterns in a predator–prey model with seasonality, Journal of Mathe-

matical Biology, 2019, vol. 78, pp. 711–737. https://doi.org/10.1007/s00285-018-1289-8

3. Yuan S., Xu Ch., Zhang T. Spatial dynamics in a predator–prey model with herd behavior, Chaos,

2013, vol. 23, no. 3, pp. 033102. https://doi.org/10.1063/1.4812724

4. Valenti D., Tranchina L., Brai M., Caruso A., Cosentino C., Spagnolo B. Environmental metal pollution

considered as noise: Effects on the spatial distribution of benthic foraminifera in two coastal marine

areas of Sicily (Southern Italy), Ecological Modeling, 2008, vol. 213, issues 3–4, pp. 449–462.

https://doi.org/10.1016/j.ecolmodel.2008.01.023

5. Morales M. A., Fernández-Cervantes I., Agustı́n-Serrano R., Anzo A., Sampedro M. P. Patterns forma-

tion in ferrofluids and solid dissolutions using stochastic models with dissipative dynamics, The Euro-

pean Physical Journal B, 2016, vol. 89. https://doi.org/10.1140/epjb/e2016-70344-7

6. Kuramoto Y. Chemical oscillations, waves, and turbulence, Berlin–Heidelberg: Springer, 1984.

https://doi.org/10.1007/978-3-642-69689-3

7. Turing A. M. The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society

of London. Series B. Biological Sciences, 1952, vol. 237, pp. 37–72.

https://doi.org/10.1098/rstb.1952.0012

8. Gambino G., Lombardo M. C., Sammartino M., Sciacca V. Turing pattern formation in the Brusselator

system with nonlinear diffusion, Physical Review E, 2013, vol. 88, issue 4, pp. 042925.

https://doi.org/10.1103/PhysRevE.88.042925

161



9. Kolinichenko A. P., Ryashko L. B. Modality analysis of patterns in reaction–diffusion systems with

random perturbations, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo

Universiteta, 2019, vol. 53, pp. 73–82. https://doi.org/10.20537/2226-3594-2019-53-07

10. Zheng Q., Wang Z., Shen J., Iqbal H. M. A. Turing bifurcation and pattern formation of stochastic

reaction–diffusion system, Advances in Mathematical Physics, 2017, vol. 2017.

https://doi.org/10.1155/2017/9648538

11. George N. B., Unni V. R., Raghunathan M., Sujith R. I. Pattern formation during transition from

combustion noise to thermoacoustic instability via intermittency, Journal of Fluid Mechanics, 2018,

vol. 849, pp. 615–644. https://doi.org/10.1017/jfm.2018.427

12. Biancalani T., Jafarpour F., Goldenfeld N. Giant amplification of noise in fluctuation-induced pattern

formation, Physical Review Letters, 2017, vol. 118, issue 1, pp. 018101.

https://doi.org/10.1103/PhysRevLett.118.018101

13. Engblom S. Stochastic simulation of pattern formation in growing tissue: A multilevel approach,

Bulletin of Mathematical Biology, 2019, vol. 81, pp. 3010–3023.

https://doi.org/10.1007/s11538-018-0454-y

14. Horsthemke W., Lefever R. Noise-induced transitions, Berlin–Heidelberg: Springer, 1984.

https://doi.org/10.1007/3-540-36852-3

15. Anishchenko V. S., Astakhov V. V., Neiman A. B., Vadivasova T. E., Schimansky–Geier L. Nonlinear

dynamics of chaotic and stochastic systems, Berlin–Heidelberg: Springer, 2007.

https://doi.org/10.1007/978-3-540-38168-6

16. Bashkirtseva I., Ryashko L., Slepukhina E. Stochastic generation and deformation of toroidal os-

cillations in neuron model, International Journal of Bifurcation and Chaos, 2018, vol. 28, no. 6,

pp. 1850070. https://doi.org/10.1142/S0218127418500700

17. Ryashko L. Sensitivity analysis of the noise-induced oscillatory multistability in Higgins model of

glycolysis, Chaos, 2018, vol. 28, issue 3, pp. 033602. https://doi.org/10.1063/1.4989982

18. Bashkirtseva I., Ryashko L. Stochastic sensitivity and method of principal directions in excitability

analysis of the Hodgkin–Huxley model, International Journal of Bifurcation and Chaos, 2019, vol. 29,

no. 13, pp. 1950186. https://doi.org/10.1142/S0218127419501864

19. Kolinichenko A., Ryashko L. Multistability and stochastic phenomena in the distributed Brusselator

model, Journal of Computational and Nonlinear Dynamics, 2020, vol. 15, no. 1.

https://doi.org/10.1115/1.4045405

20. Sauer T. Numerical solution of stochastic differential equations in finance, Handbook of Computational

Finance, Berlin–Heidelberg: Springer, 2012, pp. 529–550.

https://doi.org/10.1007/978-3-642-17254-0_19

21. Neuenkirch A., Szölgyenyi M., Szpruch L. An adaptive Euler–Maruyama scheme for stochastic dif-

ferential equations with discontinuous drift and its convergence analysis, SIAM Journal on Numerical

Analysis, 2019, vol. 57, no. 1, pp. 378–403. https://doi.org/10.1137/18M1170017

Received 15.03.2020

Kolinichenko Aleksandr Pavlovich, Student, Ural Federal University, ul. Lenina, 51, Yekaterinburg,

620075, Russia.

E-mail: kolinichenko.ale@gmail.com

Ryashko Lev Borisovich, Doctor of Physics and Mathematics, Professor, Ural Federal University,

ul. Lenina, 51, Yekaterinburg, Russia.

E-mail: lev.ryashko@urfu.ru

Citation: A. P. Kolinichenko, L. B. Ryashko. Analysis of stochastic sensitivity of Turing patterns in dis-

tributed reaction–diffusion systems, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosu-

darstvennogo Universiteta, 2020, vol. 55, pp. 155–163.

162



А. П. Колиниченко, Л. Б. Ряшко

Анализ стохастической чувствительности тьюринговских паттернов в распределенных систе-

мах реакции–диффузии
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В данной работе исследуется распределенная стохастическая модель Брюсселятора с диффузией.

Мы показываем, что в зоне неустойчивости Тьюринга генерируется множество устойчивых про-

странственно неоднородных структур. Влияние случайного шума на стохастическую динамику вбли-

зи этих структур анализируется прямым численным моделированием. Изучены шумовые переходы

между сосуществующими паттернами. Стохастическая чувствительность модели определяется как

среднеквадратичное отклонение от исходной неискаженной модели. Показано, что стохастическая

чувствительность пространственно неоднородна и существенно отличается для сосуществующих

структур. Обсуждается зависимость стохастической чувствительности от изменения коэффициентов

диффузии и интенсивности шума.
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