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ANALYSIS OF STOCHASTIC SENSITIVITY OF TURING PATTERNS
IN DISTRIBUTED REACTION-DIFFUSION SYSTEMS

In this paper, a distributed stochastic Brusselator model with diffusion is studied. We show that a variety
of stable spatially heterogeneous patterns is generated in the Turing instability zone. The effect of random
noise on the stochastic dynamics near these patterns is analysed by direct numerical simulation. Noise-
induced transitions between coexisting patterns are studied. A stochastic sensitivity of the pattern is
quantified as the mean-square deviation from the initial unforced pattern. We show that the stochastic
sensitivity is spatially non-homogeneous and significantly differs for coexisting patterns. A dependence of
the stochastic sensitivity on the variation of diffusion coefficients and intensity of noise is discussed.
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Introduction

Self-organization [1] is found in many natural phenomena. The mechanisms of ordered and
stable states formation are crucial in various processes studied in different fields of science [2—4].
Often, these phenomena are too complex for observation and experiment. In these cases, investi-
gation of self-organization is possible by introducing an appropriate mathematical model [5,6].

One of the examples of self-organization is connected with Turing pattern formation in dis-
tributed reaction-diffusion systems [7,8]. Here, the expected effect of the diffusion flux on the
system is the appearance of a homogeneous state. However, in the parametric zones of Turing in-
stability, a stable non-homogeneous state (pattern) is formed and maintained. Often, for the same
set of parameter values, the model exhibits several coexisting stable patterns. This phenomenon
of multistability was discussed in [9].

While deterministic analysis of Turing patterns is an interesting field of research by itself, the
main concern of this work is the effect of random perturbations on the system dynamics. Indeed,
real systems are always subject to disturbances of a different nature: such as Brownian motion,
solvent impurities, changing temperature or pressure. Studying stochastic models may allow to
better understand the various phenomena that take place in real systems. Noise-induced effects in
reaction-diffusion systems attract the attention of many researchers [10-13].

Mathematical modeling of stochastic processes shows the positive role of noise: in distributed
reaction-diffusion systems with random perturbations the ordered and stable states can appear. It
should be noted that different patterns respond to the perturbations in different ways: some of
them may dissipate while others are preserved. Constructive effects of random noise in nonlinear
system attract attention of many researchers [14, 15]. For the study of these effects, a new
probabilistic approach using stochastic sensitivity analysis was developed in [16-18].

In the present paper, we consider a distributed reaction-diffusion system based on the classic
Brusselator model. In this model, various scenaria of deterministic and stochastic pattern gen-
eration in this multistable model can occur. In [19], a phenomenon of noise-induced transitions
between patterns was revealed and studied on the base of modality analysis.

This work is devoted to the further development of research begun in [9,19], which introduce
the stochastic phenomena and provide the means to identify them. While previous work implies
the difference in pattern stability, the main focus of the present paper is the study and comparison
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of stochastic sensitivity of the coexisting patterns through the means of statistical analysis and
numerical methods. For weak noise, the stochastic sensitivity of the pattern is quantitatively
defined by the mean-square deviation of random states from the initial unforced pattern. We
apply numerical modeling to show the difference in the sensitivity to noise for different patterns.
By this analysis, we explain the “preference” of system in noise-induced transitions. Finally, we
analyse the dependence of stochastic sensitivity on parameters of diffusion flow, and study the
influence of increasing perturbation intensity on the behavior of different patterns.

§ 1. Pattern formation

The distributed Brusselator model with diffusion is defined by the following system of differ-
ential equations:
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Here, the variables u(t,z) and v(¢,z) stand for the concentration of the reactants, parameters a
and b are positive, and D,,, D, are diffusion coefficients. The spatial scalar variable = varies in
the interval [0, L]. The following boundary conditions are assumed:

ou ou ov ov

The non-distributed system (when D, = D, = 0) has a fixed point at u = a, v = g In

the distributed system, this fixed point defines the homogeneous equilibrium — a state in which
u(z) = u, v(x) = v for every x. A parametric zone where the fixed point of the non-distributed
system is stable and the homogeneous equilibrium is unstable is called the Turing instability
zone. Instability of the homogeneous equilibrium causes formation of spatially heterogeneous
stable structures, namely Turing patterns.

In this paper, we fix a = 3, b = 9, D, = 10, L = 40. In this case, the Turing bifurcation
value is D} = %, and patterns are observed for 0 < D, < D;.
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Figure 1. Examples of spatial patterns for D, = 2: 4.5-peak pattern (left), 6-peak pattern (right)

The patterns are wave-like structures, that can be distinguished by periodicity (number of
peaks) and tendency on the left edge of the spatial interval (ascending or descending). When
assigning type, we consider the u(z) component of the resulting state. Fig. 1 shows examples of
two patterns: 4.5-down pattern (left) and 6-down pattern (right). Both examples are obtained for
D, =2.
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For numerical simulation of u;; = u(t;, x;),v;; = v(t;,z;), we use the following difference
scheme:
Uji—1 — 2Uj; + Ujip
" | (13)
Vji—1 — 2Vji + Ujit ‘

h2

Ujt1,; = Uji + Tfjﬁ' + TDu

Vjt1,i = Vji + 7G5, + 7D,

Here,
fj,i = f(uj,iavj,i)a 950 = g(“j,i:vj,i)a

flu,v) =a— b+ Du+vv, g(u,v)=bu—u’o,

r=10"" h=02, t;=j7, x; =ih.

The system demonstrates multistable behavior: for the same parameter values, several differ-
ent patterns may be obtained depending on the initial state. For lower values of D,,, there can be
up to 20 different patterns. Shape of the structure also depends on the diffusion intensity. With
decreasing D,,, deviations of the system variables from the homogeneous equilibrium increase.
Moreover, every pattern has its own stability zone. Outside this zone, it cannot be obtained as at-
tractor, and will most likely appear only as a transient state. Fig. 2 summarizes these observations
by showing the extrema of u-variable of patterns in corresponding stability intervals.

Figure 2. Extrema of several pattern-attractors on their stability intervals

Temporal dynamics of pattern formation is another matter worth looking into. As a mechanism
of self-organization, the phenomenon of Turing instability contributes to the establishment of
organized state from a disorganized one. If we take randomly generated state as the initial
condition, then the system will quickly organize itself to an ordered state. In the Turing instability
zone, this state is a stable spatially-heterogeneous structure.

Fig. 3 shows an example of pattern generation from a random initial state. The initial condition
is generated using uniform distribution on the interval [0, 6] around the homogeneous equilibrium
(u,v) = (3,3).

The top panel shows dynamics of a process of pattern formation started from a randomly
distributed initial condition. The horizontal axis is the temporal axis, while the vertical axis is
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Figure 3. Pattern formation dynamics fora =3,6=9, D, =3, D, = 10

spatial. Values of u(¢, x) are displayed by color. The bottom figures show snapshots of wu(t, )
for three values of . From left to right: the initial state at ¢ = 0, a transient state at ¢ = 2, and
almost formed pattern at ¢t = 10. As the figure shows, the transition to the organized state occurs
quite rapidly.

§ 2. Stochastic analysis

In order to study noise-induced phenomena, the stochastic variant of the distributed Brussela-
tor model is introduced:

9 0

a—? =a— (b+ Du+vv+ Dua_;; +1é(t, ),
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Here, £(t,x) and 7(t,z) are uncorrelated Gaussian random noises with intensities ~y;,7, and

parameters ({(¢,2)) = (n(t,z)) = 0, ({(t,2)&(s,y)) = (s — )o(y — ), (n(t,2)n(s,y)) =
=0d(s—t)o(y — z).
For computer simulations, we use the Euler—Maruyama scheme [20,21] for time discretization

Wji1 — 2Uj; + Ujip

Uji1i = Uy + T f:+ 7Dy 72 + VT,
Vji—1 — 205 + Vjit1 22)
Vjy1i = Vji + TG+ 7Dy 52 + Y24V,

where 7;; and ¢;,; are uncorrelated Gaussian random noises on the grid with parameters (r;;) =
= (g;i) = 0, (rjire1) = (¢iqk1) = 9;%0:1, where d; equals one if j = k and zero otherwise.
Here, we suppose 71 = V2 = 7. The method steps are 7 = 1074, h = 0.2.

For studying stochastic sensitivity of the pattern, the deviation of a perturbed structure from its
deterministic counterpart is considered. First, we obtain the pattern by modeling without random
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perturbations. Then, this pattern is used as the initial condition for the stochastic model. The
stochastic modeling is repeated a large amount of times. With this statistical data the deviation of
a pattern can be evaluated for every x as follows:

Sulz,7) = BE(u(z) —u'(x))?,  Si(w,7) = E((x) —v"(2))%, (23)

where u*(x), u*(x) are coordinates of the initial unforced deterministic pattern, and u”(x), v (x)
are results of stochastic modeling with noise intensity 7. Note, that these sensitivity functions are
obtained numerically.

1078
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Figure 4. Analysis of stochastic sensitivity of 4 | pattern fora =3, =9, D, = 3, D, = 10,
v=10"*

Fig. 4 shows that stochastic sensitivity S,(x,) is non-homogeneous: some points of the
pattern are more sensitive to noise than others. The least sensitive fragments are localised near
the pattern extrema, while the highest sensitivity is observed near the homogeneous equilibrium
(dashed line).

The next step is to study how this deviation will change depending on system parameters. For
measuring, comparing, and displaying results, the following functions are introduced:
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Fig. 5 shows plots of S, () and S,(7) for changing noise intensity + for three patterns: 5 1,
6 1, and 7 7. Observations imply that the dependence on the noise intensity is similar to quadratic
growth. Moreover, the response of different patterns to perturbation intensity differs. While there
is only slight difference in the growth for 5 1 and 6 1, the 7 7 rises sharper than the others.
This, in order, implies higher sensitivity to noise of higher intensity. As a result, the shape of this
pattern will be affected more by random perturbations.
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Figure 5. Mean square deviation fora = 3,b =9, D, = 2, D, = 10 versus noise intensity -y

Next, consider the dependence of stochastic sensitivity of patterns on the variation of diffusion
coefficient D,. For each pattern, there is a range of D,, for which it remains stable in the system
without noise. Therefore, varying the diffusion coefficient should affect stochastic sensitivity as
well. The results are shown in Fig. 6.
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Figure 6. Mean square deviation for a =3, b =9, D, = 10, v = 0.01 versus D,

All considered patterns have similar tendency of changing deviation depending on the inten-
sity of diffusion flow. As the D, value increases, the patterns tend to become less sensitive.
Further increase shows growth of sensitivity rate. For example, 7 1 can not be observed in the
deterministic system for D, ~ 2.35, thus near this point a sharp growth is expected. In the same
manner, such incline is anticipated at D, ~ 3.3 for 6 1 and D, ~ 4.1 for 5 1.

Based on the study of these functions it may be possible to predict the emergence of noise-
induced transition phenomenon. Fig. 7 shows an example of 7 1 pattern changing into the 6 1
pattern, which can be explained by significant difference in stochastic sensitivity.
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Figure 7. Noise-induced transition for a = 3, b = 9, D, = 2.3, D, = 10: transition from 7 1
pattern to 6 1, v = 1 (left), deviation functions for v = 0.01 (right)

§ 3. Conclusion

In this paper we studied the stochastic sensitivity of spatial patterns in the distributed Brus-
selator system. We show that the system is multistable and several patterns can coexist for the
same set of parameter values. Next, the stochastic phenomenon of noise-induced pattern transi-
tion was investigated. A scenario of transition under the influence of random perturbation was
demonstrated as an example. Mean square analysis for deviations of randomly forced patterns
was performed. It was shown that based on this analysis, one can distinguish stable and sensitive
to noise patterns and predict transitions between them.

Funding. The study was funded by Russian Science Foundation, project number 16—11-10098.
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A. Il. Konunuuenko, JI. b. Pawko
AHAJIN3 CTOXaCTHYECKOW YyBCTBUTEIbHOCTH THIOPHHIOBCKHMX NATTEPHOB B pacHpele/IeHHBIX CHCTe-
Max peakuuu-1udpdy3nu

Kniouegvie crosa: monens peakunn—nuddysun, HeycToiuuBocTh ThIOPHHTA, CAMOOPraHU3aLMs, CTOXaCTH-
YecKasi YyBCTBUTEIHHOCTh

YJK: 517.958, 544.431.8
DOI: 10.35634/2226-3594-2020-55-10

B nmannoil pabote uccienyercs pacipeneieHHas cToXacTHdecKas Monesb bproccensropa ¢ muddysueii.
MsI nokasslBaeM, 4TO B 30HE HEYCTOMYMBOCTU ThIOpUHIA IE€HEPUPYETCS MHOXKECTBO YCTOMYMBBIX IIPO-
CTPaHCTBEHHO HEOAHOPOIHBIX CTPYKTYp. BimsiHue cirydaifHOTO IITyMa Ha CTOXaCTHYECKYIO THHAMHKY BOJIH-
3 3THX CTPYKTYp aHAJIU3HUPYETCsS MPAMBIM YHCIEHHBIM MOJETUpOBaHHEM. V3ydeHbl IIyMOBBIE TIEPEXOAbI
MEXAY COCYIIECTBYIOIIMMHU narTepHaMu. CroxacTHyecKas 4yBCTBUTEIBHOCTb MOJIEIH OIPENEISIETCsS Kak
CPEIHEKBAAPAaTHUYHOE OTKJIOHEHHE OT MCXOJHOM HeHcKakeHHOH Mmozaenu. IlokazaHo, 4To cToXacTHyecKas
YYBCTBUTEJIBHOCTh MPOCTPAHCTBEHHO HEOAHOPOAHA U CYLIECTBEHHO OTJIMYAETCS ISl COCYIIECTBYIOLIUX
cTpykTyp. OOCYXIaercsi 3aBUCUMOCTb CTOXaCTUYECKOH YyBCTBUTEIBHOCTH OT U3MEHEHHs KO3 HLNCHTOB
TG Qy3uu 1 HHTEHCUBHOCTH ITyMa.
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