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Introduction

The effect of functional delay endows mathematical models with essential features and the
most effective methods for studying such models are numerical methods. For partial differen-
tial equations, grid methods for solving equations with functional delay have been sufficiently
developed, see [1]. Numerical methods have also been developed for diffusion equations that
are fractional in one-dimensional space, see, for example, [2,3], including those with the effect
of functional delay [4]. For two or more spatial dimensions with fractional space derivatives
of diffusion-type equations, there are a large number of works devoted mainly to methods for
solving the arising large-dimensional system [5-13], but without the delay effect. In this paper,
the results of [4] for equations with functional delay are generalized to the two-dimensional case.
The algorithm from the article [6] is taken as a basis. Note that earlier this problem was con-
sidered [16], where a method of the first order in time and space steps was constructed. In this
paper, a method of the second order in time and space steps is constructed and proof of the order
of convergence is given.

§ 1. Formulation of the problem

Consider an equation of the form

0Pu(z,y,t)
Iy

8U(5L‘,y,t) ﬁalu(x,y,t) aalu(l',y’t) +
ot oe b

— d+ + dr ==
ot ! ox i
o (1.1)
_0%u(x,y,t)
+ d2 — + f(xa Y, tv U($, Y, t)a Ut(fﬂ, Y, ))7 <$7 Y, t) € Q x (07 T]7
where 0 <t < T, a1 < z < by, ay < y < by are independent variables, u(z,y, t) is the required
function, w;(z,y,-) = {u(x,y,t + s),7 < s < 0} is prehistory of the required function by the
time ¢, 7 > 0 is the value of delay, coefficients df, d; , i = 1,2 are positive, Q = (a1, by) x (az, bs).

The boundary conditions are given

u(r,y,t) =0, (z,y,t) € 92 x (0,7, (1.2)
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and the initial conditions are given

u(x7y7t) = 80(',’67 y7t)7 (x7y7t) 6 Q X [_7-7 O]? (1’3)

where 09 is the set Q boundary, ) is the closure of the set ).
Left-sided and right-sided Riemann-Liouville fractional derivatives of orders a;, 1 < a;; < 2,
t = 1,2 are defined by the formulas

0 u(x,y,t) 1 d? /z u(€,y,t)
(

or  T(2—a)da? J @—gm™ 9
aalugz; yt) _ - ! al)dd_; ]%d& (1.5)
ajf?u(az,y,t) -1 ! az)j_; a/y%d@ (1.6)
aEZu(az,y,t) - 1 az)dd_; j%% (1.7)

Y

We assume that the solution u(x,y,t) to the problem (1.1)—(1.3) exists and is unique. More-
over, in proving the convergence of numerical algorithms, we will assume the necessary smooth-
ness of the solution u(z,y,t).

We denote by ) = Q[—7,0) the set of functions v(s), piecewise continuous on [—7,0) with
the finite number of discontinuity points of the first kind, at the discontinuity points that are
continuous on the right. We define the norm of functions on () by the ratio

[v()llg = sup [o(s)].
s€[—1,0)
Additionally, we will assume that the functional f(z,y,t,u,v(-)) is defined on Q2 x [0, 7] x R x Q
and Lipschitz in the last two arguments, that is, there is a constant L, such that for all (z,y) € €,
te[0,T),u! € R, u? € R, v!(-) € Q, v*(-) € Q the following inequality is satisfied:

|f(x,y,t,u1,vl(-)) - f(xay’t7u2a1)2('))| < Lf(‘ul - U2| + ||?}1() - U2(')||Q)' (18)

§ 2. Difference scheme

§ 2.1. Discretization. Interpolation

T

Introduce the time step A = -, where My is a natural number and let M = [%]. Intro-
duce the points ¢, = kA, k = —My,..., M. Let’s also introduce the points ¢, = t;, + A/2,
kE=0,...,M—1.

Let’s split the segment [aq, b| into parts with a step h; = (by —ay)/Ny, and let z; = ay + ihy,
i = 0,...,N;. Divide the segment [as, bo] into parts with a step hy = (by — az)/N2, and let
Yj :a2+jh2,j:O,...,N2.

The approximation of the function w(x;, y;, tx) at the grid nodes will be denoted by uf i

For any fixed ¢ = 0,...,N; and j = 0,..., N, we introduce a discrete prehistory at the
time ty,, m = 0,...,M: {u;}m = {u};,;m — My < j < m}. By the interpolation opera-
tor (with extrapolation) of discrete prehistory we mean the mapping /: assigning the discrete
prehistory {u};} to the function u’(t) = % (t) defined on [t,,, — 7, f,n).
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We say that the interpolation operator has the order of error p on the exact solution, if there
are constants C; and Cy such that for all 4, j, m and ¢ € [t,, — 7,{,,] the following inequality
holds:

lu(t) — u(z;,y;, 1) < C; max |uk w(xi, yj, t)| + C2AAP.

(2% m—Mo gkém 7.]
In what follows, for the methods under consideration, we will use piecewise linear interpola-

tion
—t b=t

t
I . .m o k—1Y%
u'(t) = us(t) = ug; A Uij TN tho1 <t <tp, k<m. (2.1
with extrapolation by continuation
t,, —t t—t,,_ _
ul (t) = uls(t) = uf! +ul”, Lt <t < (2.2)

2,7 A 1,] A
This interpolation operator is of second order if the exact solution is twice continuously differen-
tiable with respect to ¢ [14, p. 98, 102].

In addition, this operator is Lipschitz with the constant L; = 2 in the following sense. Let

tp —t t—15_
I _.m _ k=1 k k—1
vi(t) = o(t) = vyt

b — t t =t _
V() = o (t) = o A tU Lt <t < s

st <E <y, E<m,

then, for any ¢ € [t,, — T, t,,]
Iy ol ()] < : k
[u'(t) = v'(t)] < Ly mf}l\gﬂﬁégm\uz — vy (2.3)

§2.2. Approximation of fractional derivatives

Various algorithms are used to approximate fractional Riemann-Liouville derivatives in grid
methods for solving space-fractional diffusion equations [5-8]. Let’s choose a method from [6].

Let

() (a)

+1
9% =1 g1 = (1_Oé )()

Lac(1,2).k=0,1,2,....
k+19k a € (1,2)

We introduce shifted difference operators that approximate the Riemann-Liouville deriva-
tives (1.4)—(1.7), respectively

1 7 Ni1—i+1
Oél _ o, m oy, m
+D5 ,J X E Wr U —fy1,55 _Dy U5 = E wkuz+k 1,50
L k=0
1 J N2 J+l
CY2 _ o, m a2 m
+D 1] - ho2 E :wkui,j—k—l—l’ —D2 ui,j - § : wku1j+k 1
2 k=0
Here the coefficients w, are determined by the relations
9 _
Yo ’y Y Yo ’y Y 7 Y
Wy = 5907 Wy, = §9k + o Ir1, k=21

From the results of [6, formula (2.16)] it follows that if the exact solution u(x,y,t) is four
times continuously differentiable with respect to « and y, then

ailu(xh ij tm)

o = DM u(zi, yj, tm) + O(RY), (2.4)
aﬁlu(ﬂg;cyj,tm) D,y t) + O(R2), (2.5)
3?%(935?;%7 tm) _ DS u(wi, v, t) + O(h2), (2.6)
832u(x5;/yj,tm) = _DSu(xi, yj, tm) + O(h2). (2.7)
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§2.3. Crank—Nicolson method

The two-dimensional fractional analog of the Crank-Nicolson method with functional delay
can be written as

uth — u o um
— = (A DY +dy DY +df Dy 4 dy Dy )=+ 2.8)
+ f(xza Yj, Em7 uI(Em)a utlm())v
with initial conditions
uﬁ]:@(mwy]atk)v k':—Mo,...,(L iZO,...,Nl, j:O7"'7N27 (29)
and boundary conditions
uf, =0, k=0,...,M, (x;y;) €0, (2.10)

where u!(t) is the result of piecewise linear interpolation (2.1) with extrapolation (2.2).
Let I be the unit operator,

00 = df D+ di D, 05 = df \D§* + dy_D§e.

Let us give similar for unknown u?;rl in (2.8):

A A A A
I— 2§00 2oyl = (14 2oy See)ym
(=500 = 5o5)uil™ = (I + 500" + 5 03l + @2.11)

+ Af(xza Yijs z?777,7 uI(t_m)7 Uﬁ{m())

The algorithm requires solving at each time step a system of linear equations of dimension
(N7 — 1) x (Ny — 1), which is difficult for large N; and N,. Therefore, we replace (2.11) with
another algorithm, which is reduced to systems of a special structure, convenient for solving:

A A A A
(1= 500 (1 = S8)urt = (T+ o) (T+ Sag)uy +

2 I (2.12)
+ A (@55, by 0! (Tn) s uf,, ()
The algorithm is supplemented with initial conditions (2.9) and boundary conditions (2.10).

§2.4. Solution methods for system (2.12)

To find an effective solution of (2.12), you can use various algorithms: Peaseman—Rachford
ADI scheme, Douglas ADI scheme, locally one-dimensional scheme, and other methods.

Special algorithms have also been developed for solving the arising systems of linear equa-
tions, taking into account the specifics of the homogeneous part systems (2.12) [6, 7].

We will choose Douglas ADI scheme:

A (o5} m A 'l (o) m T T
(I — 5(51 )V” = (I—i— 551 + Ad )u” + Af(xi,yj,t,ﬁ,“u[(tm),uZ (+),

A (63 m m A (03 m

[/
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§ 3. Error analysis
§ 3.1. Residual of method

Fori=1,.... Ny—1,5=1,...,Ny—1,and m = 1,..., M — 1 the residual (without
interpolation) of method (2.12) is called the grid function

1 1 A
b= (R = 500 (I = 5057 Julwi, gy, b)) = 3.1)
1 A . ; |
- (ZI + 55?1) (I + 3532)u<xi>yj7tm) - f(xw Ys, tm?“(xiv Yj, tm)? ufm(xi’ Yj ))

L emm a 3.1 (Residual order without interpolation). If the function is an exact solution to the
problem (1.1)~(1.3) u(x,y,t) twice continuously differentiable with respect to t and four times
continuously differentiable with respect to x and vy, then for the residual (without interpolation)
of the method (2.12) we have

[ < C(hf+h5+ A%, i=1,...,Ni—1, j=1,....Ny—1, m=0,...,.M—1

Proof We expand u(z;,y;,t,) and u(z;,y;,tm11) in Taylor’s series in a neighborhood of
the point (z;, y;, t,,,) and we use the relations (3.1), (2.4)-(2.7), (1.1):

m 1 1o A, 1 1 o A,
i = (ZI — 5(51 )([ — 5(52 )U(SL’i,y]’,tm+1) — (Z[+ 551 )([+ 5(52 )U(SL’i,y]’,tm> —

- f(l'i,yj,t_m,U(l'“yj,t_m),Ufm(l‘i; Ys» )) -

+

u(‘riv yjatm-i-l) — u(xiv ijtm) el e u(xh ijtm-H) + u(xiv Yj, tm)
— X — (671 +652) 5

A a1 o I I
+ Zél 1(522 (u(l‘“ yj7tm+1) — u(xi, yj, tm)) — f(l’,’,yj,tm, u(xi,yj,tm), uim(a,’“yj, )) =

- au(xza Yj, z?m)

ailu(xi’yjafm) 7aglu(xi7yj7fm>
ot — -

ox ox

—df

OPu(ws, yj, tm) _0%u(xy, ys, t)
—dy (93/] —d; 8yj + O(h3 + h3 + A?%) —

- f(xivyﬁfm? u<xivyj7fm)7 ufm(xhij )) = O(h% + h% + A2)‘

O
The residual with interpolation of the method (2.12) is called the grid function
S 1 I o, A,
ij (ZI - 5(51 )(I - 5522)u($iayjatm+l) -
1 1 A - B (3.2)
— (R 300 (I 052l g, ) = F (o o 87 (5. o), 08 (1, 95.0)),

where 4" (x;,y;,t) for t € [max{0,t,,—7},1,] is the result of piecewise linear interpolation (2.1)
with extrapolation by continuation (2.2) of the discrete history of the exact solution.

L emma 3.2 (The residual order with piecewise linear interpolation). Under the conditions
of the previous lemma, for the residual with piecewise linear interpolation of the method (2.12)
we have

W <O+ h3+ A%, i=1,...,Ny—1, j=1,...,No—1, m=0,...,M—1.
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P ro o f. From the definitions (3.1) and (3.2) we obtain
|¢T] < |¢Z;| + |f(xi7ijf’ﬂuu(xiaijfm)aufm(xiayj’ )) -

- f(‘rla Yj, t_m7 ﬁm(xla Yy, 2?Tn)a a?:n ('T”H Yj, ))|
Taking into account the Lipschitz condition (1.8), Lemma 3.1, and the fact that piecewise-linear
interpolation with extension extrapolation is of the second order, from this we obtain

Wi < 15|+ Ly(lul@s, vy, tn) — 0" (24, 95, t)| + g, (24,95, )) —
— W™ (25, Yg, ), U, (20,95, 7)) @) <
< C(h] + h3 + A%) + L;CyA?.

O
We determine the error of the method (2.12) &% = u(wi,y;,tm) — uiy, @ = 0,..., Ny,
j=0,...,Noym=0,...,M.
We say that the error is of the order of A? + h{' + hl*, if there is a constant C' such that for
alli=0,...,N,j=0,...,N,m=0,..., M the inequality |]’;| < C(AP + h{* 4 h3’) holds.

§3.2. Vector form of method

Denote by vector U™ = (uf’y, uly, ..., ul'y, _, usy, ..., uf, _y n,_1)", " is transpose sign, by
matrices S, :9;, S and S;F, corresponding operators [ — %(5?‘1, I— %(5‘2"2, I+%5?1 aI}d I+ %55‘2,
by vector F(t,,, Uf" (-)) absorbs the forcing term, its coordinates are f(z;,;, tm, u’ (tm), uf (-)).
Then the system (2.12) can be rewritten as an equation

STS U™ = SESFU™ 4 AF (Fy, UL (). (3.3)

It follows from the results of [6] that the matrices S, and S, are invertible, then the equa-
tion (3.3) can be solved, i. e. rewritten explicitly

U™t = (8,) 7N (S,) ST SyUT 4+ AS,) (ST F (b, U (4): (3.4)
Let us rewrite method (3.4) as
U™ = SU™ + AD(t,,, I({U*},), (3.5)
where S = (S,7)71(S,)7'SFS;,

(b, I{U* i) = (57) 7 (S) ™ F(tm, UL (), (3.6)

{U*},, is history of vector discrete model, 7({U*},,) is the result of the action of the operator of
piecewise linear interpolation with extrapolation by continuation at the moment ¢,,.

Let us investigate the order of error of the method (2.12) (in form (3.5)) using the embedding
in the general scheme of systems with aftereffect [1,4].

We define the norm of vector U™ by the relation

U™ = max a7

The method (3.5) is called stable if there is such constant S, that
Is| < 5

for any natural degree n. Here the subordinate norm of the matrix is considered.
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The stability of method (2.12) or equivalent to method (3.5) follows from the results [6,
Theorem 4.6, Lemma 4.6, Theorem 4.7].
The vector residual (with interpolation) of the method (3.5) is the quantity

U = (Z™T = SZ™) /A — O(t,,, [({Z*},), m=0,...,M —1,

where Z™ = (u(x1, Y1, tm), - s W(T1, Yy 15t ) W( T2, Y1, tn) s - o5 W(TN, 1, YNy—1, tm)) T 1S Vec-
tor of exact values.

It follows from the result of Lemma 3.2 that under the smoothness conditions formulated in
Lemma 3.1, the vector residual has order h? + h3 + A?, i.e. forany m =0,..., M — 1,

[l < C(RY + h3 + A%). (3.7)

§3.3. Convergence order theorem

Let us formulate and prove a theorem on the order of convergence of the method, following
the ideas of the general difference scheme with the effect of heredity [1,4, 15].

Theorem 3.1. Suppose that the smoothness conditions of the solution formulated in
Lemma 3.1 are satisfied, then the error of the method (2.12) has order h3 + h3 + A”.

Proof. Let us denote by v,, = 2™ — U™, m = —M,,..., M vector error. We have
Ym =0, m = —M,,...,0.
Form =0,..., M — 1 we have
Ym+1 = S’Ym + A’A}/m + AVm, (38)
where

i = @tm, I({Z5} ) — ©(tn, I{U" }0))-
By virtue of the statement [6, Lemma 4.6],
I(S,) 7" (Sl < 1

Hence, by the definition (3.6) of the function ®, the Lipschitz property (1.8) of the function f and
the Lipschitz property (2.3) of the operator of piecewise linear interpolation with extrapolation by
continuation, we obtain the Lipschitz property of the superposition:

[l <L max_ {lly, L= Ly(Ls+1) (3.9)

Also, we note that 7o = 0, as initial values of the method are equal to exact values.
It follows from (3.8) that

Y1 = Sy + A TSI+ A S, (3.10)
§=0 j=0

From (3.10), (3.9) and the definition of stability, we have

[l < SLAZ max_{[lll} + 5T max {||wil|}. (3.11)

—Mop<i<yj 0<i<M—1

We use the notation
R= max {||lu|}, D= STR. (3.12)

0<i<M -1
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Then we can write the estimate (3.11) in the form
Iomaall < LA | o {6} +D. (3.13)
j:

Depending on (3.13) and using the mathematical induction, let us prove the estimate
10m]| < D(1+SLA)™, n=1,... M. (3.14)
Induction base. 1f we put m = 0 in (3.13), then
10:]] < SL||d|| + D < (1 + SLA)D.

Induction step. Let the estimate (3.14) be valid for all indices from 1 to m. We need to show
that the estimate is also valid for m + 1. Fix j < m. Let iy = iy(j) be an index for which
max;_n,<i<;j{||0i]|} is obtained. By induction assumption, we gain

max  {||vs]|} = ||vi, || < DA+ SLAY° < D(1+ SLv)’.

J—Mo<i<j
Thus, the following estimate is also valid

max  {||v]|} < D1+ SLv).

J—Mo<i<j

Using the previous inequality and (3.13), we have

V1]l < SLAY D(1+ SLA) + D = D(1+ SLA)™.

j=0
Thus, the estimate (3.14) is proved and this gives
|Vl < Dexp(SLT). (3.15)
Recall the notation of the value D from (3.12) and (3.7), then the inequality
D < C(hT + i + A?),
holds and with the aid of (3.15) the proof is completed. 0

§ 4. Numerical experiments

Example 1: Consider the equation

ou(x,y,t) 0Mu(z,y,t)  _0%u(x,y,t) 0Pu(z,y,t)
) — d+ + ) ) + Y4 ) J
ot 1Ty T T
o t 0 _
—l—d;w%—/ u(x,y,t+s)ds+ f.
dy —4

Leta; =12, as =1.8,Q2=1(0,1) x (0,1) and T" = 8.

The initial conditions are u(z,y,t) = e '23(1 — 2)3y*(1 — y)3, t € [—4,0], and the boundary
conditions are u(0,y,t) = u(1,y,t) = u(z,0,t) = u(z, 1,t) = 0.

Derivative coefficients are determined d = d; = dj = d, = 1. The source term is given by

F=flzyt)+ (1 —ee®(1 -2’1 —y)°,
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r'(2.8) I'(3.8)
e T R
TRy
-5 - ) -

The exact solution is u(z,y,t) = e '23(1 — z)3y*(1 — y)3.

In the following table, we use N = N; = N, to denote the number of spatial partitions in
x-direction and y-direction, and use M to denote the number of temporal partition. The maximal
error between the true solution and the numerical solution at the last time step is denoted by Error.

Table 1. Error of the numerical solution based on the proposed scheme when M = N.

M=N Error
23 8.141415 x 10~*
24 9.640892 x 10~°
20 8.843636 x 107
26 7.724911 x 1077
27 7.165794 x 107®

Table 2. Error of the numerical solution based on the proposed scheme for different values of M
and V.

M| N Error

23 1211 9.600684 x 10~°
24 1251 8.835102 x 10°©
2° | 26 1 7.723120 x 1077
26 1 27 | 7.165388 x 1078

Table 3. Error of the numerical solution based on the proposed scheme for different values of M
and V.

M| N Error

24 | 23 1 8.159181 x 10~
25 1 2% 19.646250 x 10~°
26 125 [ 8.845132 x 106
27 126 [ 7.725280 x 107

Example 2: Consider the equation

ou(zx,y,t) oY u(z,y,t) 0% u(x,y,t) 0u(z,y,t)
= — d+ + ) I d =) d+ + )
ot T e T
0%%u(x,y,t
+ d;M + f(x,y,t,u(:c,y,t),u(:v,y,t - T))

Oy
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Letay = 1.2, as = 1.8, Q = (0,1) x (0,1), 7 = 0.5 and T = 2.
The initial condition is u(z,y,t) = e '23(1 — x)3y3(1 — y)3, t € [-7,0].
The boundary conditions are u(0,y,t) = u(1,y,t) = u(z,0,t) = u(z, 1,t) = 0.
Derivative coefficients are determined df = d; = dj =d, = 1.

f(x,y,t,u(x,y,t),u(x,y,t - T)) -
—t

= g )

- rr(éi) (2" + (1= 2)") - 3FF(:(32) (z% + (1 = 2)*%) +
o o
4 %(yl 24 (1-y)! 2) . 31“1;;5;) (y2.2 +(1—y)? 2) 4
-

S T

The exact solution is u(x,y,t) = e '23(1 — z)3y*(1 — y)3.

In the following table, we use N = N; = N, to denote the number of spatial partitions in
x-direction and y-direction, and use M to denote the number of temporal partition. The maximal
error between the true solution and the numerical solution at the last time step is denoted by Error.

Table 4. Error of the numerical solution based on the proposed scheme when M = N.

M=N Error
23 1.897697 x 10—°
24 2.887081 x 107°
25 4.644634 x 1077
26 7.410991 x 10~%
27 1.125744 x 1078

Table 5. Error of the numerical solution based on the proposed scheme for different values of M
and V.

M| N Error

23 [ 2% 1 1.495670 x 10~°
24 1 2° ] 2.161587 x 1076
2° | 26 1 3.234001 x 10~
26 127 1 6.216790 x 1078

Funding. The study of the second author was funded by RFBR, project number 19-01-00019.
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M. Hopacum, B. I. Ilumenos
Cxema Kpanka-HukoabcoH 1yt IpoOHOr0 JBYMEPHOro 1o NMPOCTPAHCTBY ypaBHeHusi auddysuu
¢ GyHKIMOHANBHBIM 3aNIa3/1bIBAHUEM

Kurouesvie cnosa: npobHOe ypaBHeHue auddys3uu, IBe MPOCTPAaHCTBEHHBIE KOOPAWHATHI, ()YHKIIMOHAIb-
HOE 3ala3asIBaHue, anmpokcuMartus [ pronBansaa—JleTaukoBa, meton Kpanka—HwukonbcoH, dhakropusamms,
MOPSAIOK CXOIUMOCTH.

YIAK: 519.63
DOI: 10.35634/2226-3594-2021-57-05

PaccmarpuBaeTcst AByMepHOE 10 IPOCTPAHCTBY APOOHOE ypaBHEHHE TUPPy3HH C HYHKIIMOHATIHHBIM 3a11a3-
IeIBaHHEM 001Iero Buaa. J[is atoit 3amaum koHCTpyHpyeTcss Meton Kpanka—HuKoiapCOH, OCHOBaHHBIN Ha
CABUHYTHIX (opmynax ['proHBanbra—JleTHUKOBa 1711 alPOKCUMALMH APOOHBIX MPOM3BOAHBIX MO KaXKHOH
MPOCTPAHCTBEHHON MEPEMEHHOM U NMPUMEHEHUH KyCOYHO-ITMHEHHON MHTEPHOJSIMM AUCKPETHOM MpebIc-
TOPHH C IKCTPANOISLUEN IPOAOIDKEHHEM [T yueTa 3¢ dexra 3anazapiBanus. s cBeieHUs BO3HUKAIOILIEH
CUCTEMBI OOJIBIION Pa3MEPHOCTH K TPEXIHAaroHAIBHBIM CHCTEMaM HCIoNb3yeTcs cxema Jlyrnaca. Mccneno-
BaHa HeBs3Ka MeToaa. [l moryyeHus: nopsiika MeToAa, IPOU3BOIUTCS CBEICHUE K KOHCTPYKIMSAM OOIIeH
Pa3HOCTHOM CXEMBI CUCTEM C HACIEACTBEHHOCTBIO. J/loKa3zaHa Teopema O BTOPOM IOPSIKE CXOAUMOCTH
METOZla 10 BPEMEHHBIM M NPOCTPAHCTBEHHBIM mIaraM. IIpeacraBieHbl pe3ynbTaTsl YHCICHHBIX KCHEPHU-
MEHTOB.

®duHaHcupoBaHHe. VccienoBaHUs BTOPOTO aBTOpa BBIMOJIHEHBI MpU (QHUHAaHCOBOH momnepxkke PODOU
B paMmkax Hay4dHoro npoekra 19-01-00019.
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