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In this paper, we determine the components of the Weyl tensor of almost contact metric (ACR-) manifold
of class C12 on associated G-structure (AG-structure) space. As an application, we prove that the con-
formally flat ACR-manifold of class C2 with n > 2 is an n-Einstein manifold and conclude that it is an
Einstein manifold such that the scalar curvature r has provided. Also, the case when n = 2 is discussed
explicitly. Moreover, the relationships among conformally flat, conformally symmetric, £-conformally flat
and ®-invariant Ricci tensor have been widely considered here and consequently we determine the value
of scalar curvature r explicitly with other applications. Finally, we define new classes with identities
analogously to Gray identities and discuss their connections with class C5 of ACR-manifold.
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Introduction

Throughout this paper, we consider a Riemannian manifold with an odd dimension 2n+ 1 and
furnished by an almost contact structure (®, ¢, 7). Chinea and Gonzalez [9] obtained a complete
classification for ACR-manifold through the study of the covariant derivative of fundamental
2-forms on the manifolds in question and consequently, these classifications imply a new class
which is called class C'5 with the following condition:

Vx(@Q)Y, 2) = n(X){n(Z2)Ven)®Y —n(Y)Ve(n)®2Z} VXY, Z € X(M),

where V is the Levi-Civita connection on M and Q(X,Y) = g(X,®Y). On the other hand,
Bouzir et al. [6] studied the properties of the manifolds of class (5 when the dimension is 3, but
the first author [2] determined the structure equations of Cartan for ACR-manifold of class C},
on the AG-structure space and determined the components of the Riemannian curvature tensor
and Ricci tensor during this study; some of these results are given in the next section. Whereas,
Candia and Falcitelli [7, 8], generalized the class C'5 into the class C5 & Cis.

Moreover, as a quotation from the citation [19], we found that Weyl introduced a generalized
curvature tensor which vanishes whenever the metric is conformally flat and this is why some
times it is called conformal curvature tensor. The Weyl conformal curvature tensor field W is a
tensor of type (3, 1) on ACR-manifold (M?"*! g ®, &, n) and is defined to be (see [11])

1
W(ZU)Y = R(ZU)Y -

n —

S(U.Y)Z ~ S(Z,Y)U + g(U,Y)LZ — g(Z,Y)LU]

m[g(a Y)Z - g(Z,Y)U], (0.1)

for all U,Y,Z € X(M), where R is the Riemannian curvature tensor, S(U, Z) = g(LU, Z) is
the Ricci tensor, L denotes the Ricci operator and r is a scalar curvature. Moreover, the Weyl
tensor W of type (4, 0) is defined by W(X,Y, Z,U) = g(W(Z,U)Y, X))V X, Y, Z, U € X(M).
It is straightforward to show that the Weyl tensor possesses the same symmetries as the Rieman-
nian tensor. However, Weyl tensor possesses very interesting property which is traceless tensor,
in other words, it vanishes for any pair of contracted indices.
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Geometrically, the Weyl tensor conveys information about the tidal force and shows how a
body feels when moving along a geodesic. In fact, the major difference between the Weyl tensor
and the Riemannian curvature tensor is that Weyl tensor does not decode information on how the
volume of the body changes, but rather only how the shape (topology) of the body is distorted
by the tidal force. More concretely, one could decompose the Riemannian curvature into trace
and traceless parts which allows an easy proof that the Weyl curvature tensor is the conformally
invariant part of the Riemannian curvature. So, without the slightest doubt, the Weyl tensor is no
less important than the Riemannian curvature tensor from geometrical point of view.

In this light and as the trace part (Riemannian curvature) has been studied in [2], it would
be interesting and reasonable to study the Weyl curvature tensor (conformally invariant part) of
ACR-manifold of class (5 to complete the geometrical (trace and traceless parts) picture of
ACR-manifold of class C'15. On the other hand, Hwang and Yun [13] studied the Weyl curvature
tensor that is weakly harmonic with some conditions. Whereas, Blair and Yildirim [5] discussed
the conformally flat for another class.

The paper is structured as follows. In Section 1, we recall some definitions and theorems
about ACR-manifold. In Section 2, we calculate the components of the Weyl tensor on AG-struc-
ture and its relation with n-Einstein manifold as an application. Also, we focus on ¢-conformally
flat manifold of the class C}, and the result shows it is ®-invariant Ricci tensor; then the scalar
curvature is calculated explicitly. In Section 3, interesting theorems are obtained on the discus-
sions of the contact analog of Gray identities on Riemannian curvature tensor of the class '
and their generalization to Weyl tensor.

As a future work, the authors can develop this work in the direction of the citations [4, 10,12,
18,20].

§ 1. Preliminaries

We denote by M?"*! and g, the smooth manifold M of dimension 2n + 1 and the Riemannian
metric respectively.

Definition 1.1 (see [3,15]). A Riemannian manifold (M?"*! g) is called an 4CR-man-
ifold if it is supplied by a structure of triple (£, 7, ®), where ® is a (1, 1)-tensor over M, ¢ is a
vector field on M and 7 is a 1-form of M, such that V U,V € X (M), the following hold:

D) =0; nE)=1 no®=0; P+id=n®¢
g(@U, ®V) +n(U)n(V) = g(U, V).

Note that X (M) is the module of all vector fields on M. On the other hand, for the back-
ground of AG-structure space, the researchers can refer to the citation [15,17]. Moreover, on
AG-structure space, the tensors g and ® of ACR-manifold M?"*! are given by the following [15]:

1 0 0 0 0 0
(g)=10 O I, |; (@ =10 V—1I, O ; (1.1)
0 I, O 0 O —/ 11,
where £,0 =0,1,...,2n and [, is n X n identity matrix.

Theorem 1.1 (see [2]). The components of Riemann curvature tensor R over AG-structure
space of the class C5 with dimension 2n + 1 are given by:

1) Rey+Co Cy = CY
2) Ro

060

+ e Cb — Cab,‘



b oAb
3) Radé - Aa(él’
and the other components are 0 or can be obtained by the features of R or the conjugates
(i.e., R;'.kl = R;ﬁ,l;[) to the above components, where a,b,c,d = 1,2,...,n, a = a +n, Aéid} =

= A‘[Ibi] =Cpg =C bdl = 0 and C*, C, are the components of 6" structure tensor G (see [16]).

Theorem 1.2 (see [2]). The components of Ricci tensor S over AG-structure space that
coming from the class C5 with dimension 2n + 1 are provided as follows:

1) Spo +2C* C, = 2C%;
2) Sy =0;
3) Sab + Ca Cp = Cap;
4) Sap +C* Cp = Cf + A%,
and the remaining components are set by the symmetries or conjugates to the above components.
Definition 1.2 (see [19]). An ACR-manifold (M?"*! g @, & n) is called
(i) &-conformally flat if W(X,€,Y,Z) =0,
(i1) conformally symmetric it W(X,Y, Z, ®U) = 0;
(iii) ®—conformally flat if W (U, dX, dY, dZ) = 0,
forall U, X,Y,Z € X(M).
Definition 1.3 (see [17]). An ACR-manifold (M?"*! & ¢ n,g) is called
(i) of class CR; if g(R(®U, X )PY, dZ) = g(R(P*U, P*X)DY, dZ);
(i1) of class C'Ry if
g(R(®X,®Y)DZ, ®U) = g(R(P*X, ®?Y)DZ, ®U) + g(R(P*X, Y )P*Z, DU)
+ g(R(P*X, @Y )0 Z, 9*U);
(iii) of class CR3 if g(R(®U, dX)DY, D7) = g(R(DP*U, P2 X)D?Y, d*Z),

for all X,U,Y, Z € X(M). Moreover, over AG-structure space, the aforementioned classes are
equivalent to the following:

CRy <= Ripca = Rapea = R
CRy <= Ripcd = Rapea = 0;
CRg < Rapeq = 0.

Definition 1.4 (see [14]). An ACR-manifold (M?"™! g, ® £ n) is said to be n-Einstein
manifold if the Ricci tensor S of M attains the following equation:

SU,V)=ag(UV)+BnU)n(V) YUV eX(M),

where a, f € C*°(M), (the set of all smooth functions on M). In particular, if 5 = 0 then M
becomes Einstein manifold.

Definition 1.5 (see [15]). An ACR-manifold (M?*"*! g, ® &, n) has ®-invariant Ricci
tensor property if it satisfies the condition:

S(®U,V) + S(U,®V)=0 YU,V e X(M).

Lemma 1.1 (see [1]). An ACR-manifold (M?*", g, ®, &, n) possesses ®-invariant Ricci ten-
sor, if and only if, the components Sy, Sqp and their conjugates vanish, where a,b=1,2,... n.

a=0

abe
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§ 2. The geometry of Weyl tensor on class ('

In this section, we discuss the geometry of Weyl tensor on class C'5 as below.

Theorem 2.1. The components of Weyl tensor on AG-structure space of the class C5 are
given by:

1) Waoeo = C¢ — CCe — 55{62 Soo + Sac} + gome—702:

2n(2n 1)

2) Wapao = C* — C*C° — 515 Sae;

3) Wabea = ﬁ{sbc 04 — Spa 02},

4) Wipeg = A — 557{Shi 08 + Sac 0} + gy 06 04

5) Wased = 27144 05 — Sac 05 v

6) Wisea = 557155 04 — Siy 06 — Sac 0g + Sad 00} + 5oy 19q 0¢ — 02 93}

and the other components are () or obtained by the features of W or conjugates to the above
components.

Proof. Suppose that (M?""! g & £ n)is an ACR-manifold of class Cj,, then according
to equation (0.1) and for each X, Y, Z, U € X (M), we get

W(X,Y,Z,U) = g(W(Z,U)Y,X) =
= R(X,Y,Z,U) —
—S(Y, Z2)g(X,U) + g(Y,U)S(X, Z) — g(V, Z)S(X,U)}

{9(Y,U)g(X,2) — g(Y, Z)g(X,U)}.

(Y, U)g(X, Z)

r
* 2n(2n — 1)

So, the components of Weyl tensor over AG-structure space are given by:

1
Wi = Rijr — ﬁ{sﬂ ik — Sik Git + g Sik — gk Su}
T

——— 951 9ir — Gir Gi }, 2.1
+ (20 — 1){9]l ik — Gik Gt} 2.1)
where ¢, j,k,l =0,1,...,2n. Now, we choose ¢ = 0,a,a, j = 0,0, b, k=0,c,cand [ = 0,d, d,
where a,b,c,d =1,2,...,n and a, b ¢, d=n+ 1,n+2,...,2n. If we take all possible cases of
indexes 1, j, k, [, then we have only six cases and their conjugates or symmetries in which Wk
does not vanish and these six cases are

(i,5,k,1) € {(a,0,¢,0), (a,0,¢,0), (a,b,c,d), (@b, ecd), (a,béd),(a,b,cd)}.

So, using the components of R in Theorem 1.1, components of .S in Theorem 1.2 and components
of g in equation (1.1) and substituting them in equation (2.1), we arrive to the results by taking
into account R}y, = R; .

Corollary2.1. If the ACR-manifold (M*"', g, ®, &, n) is of class C1o, then for all X, Y,
Z, U € X(M), we have

W(IL(X), 1(Y), I(Z), IL(U)) = W(II(X), IL(Y), TI(2), II(U)) = 0,

where Il = —3(®% 4+ \/—1®), and Il = 1(—9? + /—1®).
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Proof. Since on AG-structure space the following are equivalent:

WIL(X), ILY), I(Z),II(U)) <= Wapea; a,b,c,d=1,2,...,n,

WI(X),T(Y),TI(Z2),TI(U)) <= W,;,5; a,b,é;d=n+1,n+2,...,2n.
Then Theorem 2.1 gives the results.

Theorem 2.2. If the ACR-manifold (M*"*1 g, ® &, m) of class Cyy having n > 2, is

conformally flat then it is n-Einstein manifold with o = ﬁ(soo — =) and B = Sy — .

Proof. Suppose that M is conformally flat, then W, = 0 for all ¢, 5, k,1 = 0,1,...,2n.
Then we get from Theorem 2.1 that Wjp0 = 0, and W, ; = 0. Then replacing ¢ by b in the first
and contracting (c, d) in the second we get respectively the following:

r
S&b = (2n — 1){0; — CaCb} - 51? S()o + %52 (22)
r

—5e. 23
570 23)
Now, adding equations (2.2), (2.3), using the fact A;¢ = A% and then from Theorem 1.2, item 4,
we obtain S&b = %%4(500 — %)(Sg, ifn > 2. But, Wdoéo =0 gives S&@ = (2n — 1){Cac — CGCC}
and from Theorem 1.2, item 3, we have S;; = 0. Also, we note that the remaining items
of Theorem 2.1 satisfy the previous results. But, Definition 1.4 leads M to be an 7-Einstein
manifold having Spo = o+ § and o = ﬁ(Soo - I).

Corollary 2.2. If the ACR-manifold (M*"*' g, ® & n) of the class Cio with n > 2 is
conformally flat then it is Einstein manifold with scalar curvature r = —n(2n — 5).Sgo.

25&5 = (2n — 1)AZCC +

Proof. If M is conformally flat, then M is n-Einstein manifold according to Theorem 2.2.
But if 3 = 0, then M is Einstein manifold with Soy = a = ﬁ(Soo — =), and this implies that
the value of r is given.

Corollary 2.3. If the ACR-manifold (M g, ®,&,n) of the class Cyo is conformally
flat then it has ®-invariant Ricci tensor.

Proof. If M is conformally flat then Theorems 1.2 and 2.2 yields S, = S, = 0. But,
Lemma 1.1 attains the requirement.

Corollary 2.4. If the ACR-manifold (M®, g, ®,&,n) of class Co is conformally flat then
r = 250 and A% = 0.

Proof Suppose M?® is conformally flat, then regarding the proof of Theorem 2.2, we
have r = 2S5y9. But r = 2S5, + Soo = Sia = %Soo- Thus, contracting item 4, in Theorem 1.2,
we get A% = 0.

Theorem?2.3. The ACR-manifold (M*"*1 g, ®, & n) of class Cys is conformally symmetric,
if and only if, it is conformally flat.

Proof. [If M is conformally flat, then W(X,Y,Z U) = 0 for all X,Y,U,Z € X(M).
So, if we replace U by ®U, then also we have W (XY, Z, ®U) = 0 and this implies that M is
conformally symmetric according to Definition 1.2.

Conversely, suppose that M is conformally symmetric. Then according to Definition 1.2, we
have

W(X,Y,Z,®U)=0 VX,Y,Z Uc X(M),
Wige X' Y? ZFE®LU =0 0,5,k 1,t =0,1,...,2n,



Considering the components of ® in equation (1.1), we get:

Wik =Wi;q=0; d=12,....n, d=d+n.

Now, from the symmetries of 1/, we obtain that all the components of W in Theorem 2.1 must
be vanishing. Thus M is conformally flat.

Remark 2.1. Regarding Theorem 2.3, we discover the previous theorems and corollaries are stay
valid if we replace the statement “conformally flat” by “conformally symmetric”.

Theorem 2.4. If the ACR-manifold (M**, g, ®,£,n) of the class Co is E-conformally
flat with A% =~ 5, and v € C>®(M) then it is n-Einstein manifold, with
1
2n — 2
Proof. Suppose that M is -conformally flat with A% = ~ 6%, then we pay attention to
Definition 1.2 and obtain W (X, &,Y, Z) = 0. Thus, on AG-structure space, we have W, = 0,
where 7,7,k = 0,1, ...,2n. Taking into account Theorem 2.1, we get W00 = Wioeo = 0, and
this implies that S;z = 0 and ;. = (2n — 1){C¢ — C*C.} — 62 Spo + 5.0¢. Moreover, from
Theorem 1.2, we have S;c = (2n — 1){Sac — A%} — 62 Soo + 5= 02. Therefore,

o =

r
{Soo+(2n—1)’)/— %}, B: SQO—OA

(21— 2)Sac = (20— DAL +{So0 — 5-}32-

Since A% =~ §2, then M is n-Einstein manifold, with
1 r

2n — 1)y — — = —a.

2n—2{500+( n—1)y 2n}7 f =S —a

Corollary 2.5. If the &-conformally flat ACR-manifold (M*"™ & & n,g) of class Cis
with A% = ~ 62, is Einstein manifold, where -y € C*°(M), then the scalar curvature

r = —2n{(2n — 3)500 - (277' - 1)7}

o =

Proof. Suppose M is Einstein manifold, then from Theorem 2.4, we have 5 = 0 and this
implies that Syy = a = %%2{500 + (2n — 1)y — 5-}. So, the last equation gives:

r=—=2n{(2n — 3)Sp — (2n — 1)7y}.
Corollary 2.6. Every é-conformally flat ACR-manifold (M*"+1 g, ®, £, n) of class Cis
has ®-invariant Ricci tensor.

Proof. Suppose that M is {-conformally flat, then Wigo = Wigeo = 0. Thus, from
Theorems 1.2 and 2.1, we deduce that S,; = S,;, = 0. Then we establish the desired.

Theorem 2.5. If the ACR-manifold (M*"*! & ¢ n, g) of class Cyy is ®—conformally flat
with Al = vy 6y, then it is n-Einstein manifold with o = - + (2n — 1)1, and 3 = Syo — .

Proof. Suppose that M is ®-conformally flat, then from Definition 1.2, we have
W(PX, oY, ¢Z,0U) =0 VX,Y,Z U e X(M),
Wi (0X)" (®Y) (®2)" (®U) =0, 1,4,k 1=0,1,...,2n,
Wign ®f @], ®F & =0, t1,ts,t3,t4=0,1,...,2n.

According to the above equations and the components of ® in equation (1.1), we establish W1, =
0 fore,j,k,l =1,2,...,2n. Regarding Theorem 2.1, we acquire

Wabed = Wiped = Waned = Wagea = 0

a a a

Regarding the proof of Theorem 2.2, we attain Sy, = 0, and 255, = (2n — 1) A% + 5-05. Since
A% = v 0y, then M is n-Einstein manifold having o = {- + (2n — 1)3, and 8 = Sy — a.
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Corollary 2.7. If the ®-conformally flat ACR-manifold (M*"*1 g, ®, ¢, n) of class Ciy
with A% =~ 0§, then it is Einstein manifold with the scalar curvature r = 4nSyy — 2n(2n — 1)~.

Proof. Supposethat M is P-conformally flat. The consideration of Theorem 2.5 gives M to
be Einstein manifold if 3 = 0, and then Syy = a = /-+(2n—1)3. Thus, r = 4n.Sp0—2n(2n—1)7.

Corollary2.8. If the ACR-manifold (M?*"' g, ®, &, n) of class Cyy is ®-conformally flat,
then it possesses ®-invariant Ricci tensor.

Proof. Supposethat M is ®-conformally flat. Then the proof of Theorem 2.5 gives S,;, = 0,
and from Theorem 1.2 we have S,y = 0. Then Lemma 1.1 produces the claim of this corollary.

Corollary 2.9. The ACR-manifold (M*" g, ®,£,n) of class Cyy is conformally flat, if
and only if, it is &-conformally flat and ®-conformally flat.

Proof. The assertion of this corollary is achieved from Theorems 2.1, 2.2, 2.4, and 2.5.

§ 3. The contact analogs of Gray identities on class C»

In this section, we discuss the contact analogs of Gray identities on the Riemannian curvature
tensor of the class ('}, and their generalization to Weyl tensor.

Theorem 3.1. The classes CRy, C'Ry, and C'R3 are equivalent on the ACR-manifold M
of class C1s.

Proof. Suppose that M is ACR-manifold of class C'5. Then under Theorem 1.1, and
Definition 1.3, we have

Raped = Rapea = R&l;cd =0.=M¢e CRl,
Rapea = Rapea = 0. = M € CRy;
Riped = 0. — M € CR5.

Then the classes C'R;, C'R,, and C R3 are equivalent on M.
Definition3.1. An ACR-manifold (M?"™! g, &, ¢ n)is called
(i) of class CWy if g(W (U, ®X)PY, D7) = g(W (DU, P> X )Y, ®2);
(i1) of class CWy if
gW(®X,0Y)DZ, ®U) = g(W (92X, d?Y)DZ, ®U) + g(W (P*X, Y )P*Z, dU)
+ g(W (92X, dY)DZ, *U);

(iii) of class CW3 if g(W (®X, ®Y)DZ, dU) = g(W(P2X, d?Y)P2Z, P2U),

forall X,Y,Z,U € X(M).

Now, since the Weyl tensor has the same properties as the Riemann curvature tensor, then
from Definition 1.3, we get the following lemma.

Lemma 3.1. On AG-structure space, the above classes are equivalent to the following:

CWy <= Wabed = Wapea = Wiy = 0;
CWy <= Wabea = Wapea = 0;
CWg < decd =0.
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Interesting relations with 7-Einstein manifolds and ®-invariant Ricci tensor are given in the
following theorems.

Theorem 3.2. If the ACR-manifold (M*"*, g, ®,£,n) of class Cyo belongs to the class
CWy, then it is n-Einstein manifold with o = 271%4{500 — =} and 8 = Spo — «, provided that
n > 2.

Proof. Suppose that M € C}5 and M € CWy, then from Lemma 3.1, we have Wjp.q =

= Wapca = Wjq = 0. According to Theorem 2.1, we get:
1
0=5— 1{Sbc 03 — Sba ¢ }
1 r
= ———{S;, 05 — Sjy 0% — Sac 64 + Saa OV} + ———{05 62 — 6% 55}
0 2n_1{Sbc 5d de 50 S, d+ d c}+2n(2n_1){ d Yc c d}

Contracting the above equations with respect to the indexes (a, d), we obtain:

1 {T(n2; 1)

S; — Saa}ol.

c =

n—2
Since r = 25, + Soo, then M is n-Einstein manifold having o = ﬁ{soo —Z}and 8 = Sy —a.

Corollary 3.1. If the ACR-manifold (M*"' g, ® & n), having n > 2 belongs to the
classes Cyo and CW, then it is Einstein manifold with r = —n(2n — 5).Sgo.

Proof. Using Theorem 3.2, we conclude that M is Einstein manifold if 5 = 0, and then
Soo = & = 5-—~{S00 — £}. Thus, we obtain the result.

Corollary 3.2. If the ACR-manifold (M*"*, g, ®, & n), having n > 2 belongs to the
classes Co and CW then it possesses P-invariant Ricci tensor.

Proof. According to the proof of Theorem 3.2, we attain the claim of this corollary.

Theorem 3.3. If the ACR-manifold (M?®, g, ®,£&,n) belongs to the classes Cy and CW1,
then it possesses ®-invariant Ricci tensor and v = 25.

Proof. Consider M € (5 and M € C'Wy, then with the proof of Theorem 3.2, we have
Sab =0 and
r= 45@,1. = r =2r— 2500. — r = 2500.

So, this completes the proof.

Corollary 3.3. If the ACR-manifold (M5, g, ®, &, n) belongs to the classes Cy5 and CW1,
then A = (.

Proof. Suppose that M € Ci5 and M € CW;. Note that r = 2S;, + Soo. Applying
Theorem 3.3, we have S;, = %Soo- So, by using item 4 of Theorem 1.2, we obtain the result.

Theorem3.4. The ACR-manifold (M** L, g, ®, &, n) of class Cyo belongs to the class C'W,
if and only if, it has ®-invariant Ricci tensor.

Proof. Consider M € Cj, and M € CWs, then Wypey = Wypeq = 0 and this implies
that S,, = 0 according to Theorem 2.1. Thus M has ®-invariant Ricci tensor according to the
combination of Theorem 1.2, Lemma 1.1, and the consequence obtained. Conversely, if M has
®-invariant Ricci tensor, then S,0 = Sy, = 0. Thus, combining the previous result with the
Theorem 2.1, we have Wjpq = Wapea = 0. So, M belongs to the class C'Ws.
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Theorem3.5. The ACR-manifold (M*"*L, g, ®, &, n) of class Cy5 belongs to the class C'Ws,
if and only if, it possesses ®-invariant Ricci tensor.

Proof. Consider M € C, and M € CWj3, then Wy; = 0 and this implies that S, = 0
under Theorem 2.1. Thus M has ®-invariant Ricci tensor according to the combination of
Theorem 1.2, Lemma 1.1, and the resulting consequence. Conversely, if M has ®-invariant Ricci
tensor, then we apply Lemma 1.1 and get S0 = Si = 0. So, Theorem 2.1, item 3, yields
Wipea = 0. Thus, we conclude the implication of this theorem.
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M. IO. Abacc, K. C. A. Anv-3amuns
O Tenzope Beiinin ACR-MHoroo6pasuii kiiacca Cio ¢ NPHIOKEHUSIMH

Kniouesvie cnosa: mModTH KOHTAKTHOE METpHUUECKoe MHOTooOpasue kmacca Cha, 1)-dHHINTERHOBCKOE MHO-
roobpasue, TeH3op Betis.

YIK: 514.77
DOI: 10.35634/2226-3594-2022-59-01

B nanHO# paboTe MBI OlpezensieM KOMIOHEHTHI TeH30pa Belins noutu koHTakTHOTO MeTprueckoro (ACR-)
MHOroobpasus kiacca Cls Ha accolMMpoBaHHOM IpocTpaHcTBe G-CTpykTyphl (AG-cTpykTyphl). B Kaue-
CTBE MPUJIOKEHUSI MBI JIOKa3blBaeM, 4T0 KOH(opMHO mockoe ACR-mHoroo6pasue kmacca Chio ¢ n > 2
SBTISIETCA 1)-DWHIITEHHOBCKMM MHOT000pa3HeM U 3aKII09aeM, YTO 3TO SWHIITEHHOBCKOE MHOTOOOpasue Ta-
KOE, 4TO CKaJIsipHas KpUBH3HA 7 oOecrieueHa. Takxke B sIBHOM Buae oOCyKIaeTcsl cily4ai, korma n = 2.
Bomee Toro, 3mech MIMPOKO PacCMOTPEHBI OTHOMIEHUS MEXITy KOH(QOPMHO TUIOCKHM, KOH(GOPMHO CHM-
METPHYHBIM, {-KOHPOPMHO IUIOCKMM U P-MHBapMaHTHBIM TeH30poM PHYuM, W MOSTOMY MBI OIpenesnseM
3HaUYE€HUE CKAJIPHON KPHBH3HBI © B SIBHOM BHZE C JIPyTMMHU NpUiIokeHUsAMH. HakoHeln, MBI ompenesnsemM
HOBBIE KJIACCHI C TOXKECTBAMH, aHAJIOTMYHBIMU TOXJecTBaM [pes, u o0cykaaeM HX cBs3b ¢ Kiaccom Cha
ACR-MHOr0o0o0pasuii.

CIINUCOK JIMTEPATYPbI

1. Abood H. M., Abass M. Y. A study of new class of almost contact metric manifolds of Kenmotsu type,
Tamkang Journal of Mathematics, 2021, vol. 52, no. 2, pp. 253-266.
https://doi.org/10.5556/j.tkjm.52.2021.3276

2. Abass M.Y. Geometry of certain curvature tensors of almost contact metric manifold, PhD thesis,
College of Education for Pure Sciences, University of Basrah, 2020.
https://faculty.uobasrah.edu.iq/uploads/publications/1620305696.pdf

3. AGy-Caneem A., PycranoB A.P., Xapuronosa C.B. Axcroma P-ronomopdubix (2r + 1)-miockocreit
i 00600meHHbIX MHOT00Opasuit Keamorry / Bectauk ToMCKOTO TOCYIapCTBEHHOTO YHHWBEPCHTETA.
Marematuka u Mmexanuka. 2020. Ne 66. C. 5-23. https://doi.org/10.17223/19988621/66/1

4. Alegre P., Fernandez L. M., Prieto-Martin A. A new class of metric f-manifolds, Carpathian Journal
of Mathematics, 2018, vol. 34, no. 2, pp. 123-134. https://www.jstor.org/stable/26898721

5. Blair D. E., Yildirim H. On conformally flat almost contact metric manifolds, Mediterranean Journal
of Mathematics, 2016, vol. 13, issue 5, pp. 2759-2770. https://doi.org/10.1007/s00009-015-0652-x

6. Bouzir H., Beldjilali G., Bayour B. On three dimensional C'o-manifolds, Mediterranean Journal of
Mathematics, 2021, vol. 18, issue 6, article number: 239. https://doi.org/10.1007/s00009-021-01921-3

7. de Candia S., Falcitelli M. Even-dimensional slant submanifolds of a C5 & C12-manifold, Mediterra-
nean Journal of Mathematics, 2017, vol. 14, issue 6, article number: 224.
https://doi.org/10.1007/s00009-017-1022-7

8. de Candia S., Falcitelli M. Curvature of C5 & C2-manifold, Mediterranean Journal of Mathematics,
2019, vol. 16, issue 4, article number: 105. https://doi.org/10.1007/s00009-019-1382-2

9. Chinea D., Gonzalez C. A classification of almost contact metric manifolds, Annali di Matematica
Pura ed Applicata, 1990, vol. 156, no. 1, pp. 15-36. https://doi.org/10.1007/BF01766972

10. Chojnacka-Dulas J., Deszcz R., Glogowska M., Prvanovi¢ M. On warped product manifolds satisfying
some curvature conditions, Journal of Geometry and Physics, 2013, vol. 74, pp. 328-341.
https://doi.org/10.1016/j.geomphys.2013.08.007

11. De U.C., Suh Y.J. On weakly semiconformally symmetric manifolds, Acta Mathematica Hungarica,
2019, vol. 157, issue 2, pp. 503-521. https://doi.org/10.1007/s10474-018-0879-7

12. Deszcz R., Glogowska M., Jetowicki J., Zafindratafa G. Curvature properties of some class of warped
product manifolds, International Journal of Geometric Methods in Modern Physics, 2016, vol. 13,
no. 01, 1550135. https://doi.org/10.1142/S0219887815501352

13



13.

14.

15.

16.

17.

18.

19.

20.

Hwang S., Yun G. Ridigity of Ricci solitons with weakly harmonic Weyl tensors, Mathematische
Nachrichten, 2018, vol. 291, issue 5-6, pp. 897-907. https://doi.org/10.1002/mana.201600285
Kenmotsu K. A class of almost contact Riemannian manifolds, Tohoku Mathematical Journal, 1972,
vol. 24, issue 1, pp. 93-103. https://doi.org/10.2748/tmj/1178241594

Kupuuenko B. @. luddepeHupnanbHO-reoMeTpHUECKIe CTPYKTYphl Ha MHOrooopasusx. Onecca: [le-
garHeIA goMm, 2013.

Kupuuenko B. @., louaykosa H. H. KoHntakTHO reomesnveckue npeoOpa3oBaHUs MOUTH KOHTAKTHBIX
MeTpU4ecKux cTpykTyp // Maremarnueckue 3amerku. 2006. T. 80. Bem 2. C. 209-219.
https://doi.org/10.4213/mzm2802

Kupnuenko B. ®@., Kycosa E.B. O reomerpun cimabo KOCHMITIEKTHYECKHX MHOT0O0Opas3uii // ®ynaa-
MeHTadbHas U mpukinagaas matemaruka. 2010. T. 16. Beim. 2. C. 33-42. http://mi.mathnet.ru/fpm1304
Rustanov A.R., Polkina E.A., Kharitonova S.V. Projective invariants of almost C'()\)-manifolds,
Annals of Global Analysis and Geometry, 2022, vol. 61, issue 2, pp. 459-467.
https://doi.org/10.1007/s10455-021-09818-w

Venkatesha, Naik D. M., Kumara H. A. Conformal curvature tensor on paracontact metric manifolds,
Matematicki Vesnik, 2020, vol. 72, no. 3, pp. 215-225. http://www.vesnik.math.rs/vol/mv20304.pdf
Wang Y., Wang W. Curvature properties of almost Kenmotsu manifolds with generalized nullity
conditions, Filomat, 2016, vol. 30, no. 14, pp. 3807-3816. https://doi.org/10.2298/FIL1614807W

INoctynuna B penakiuto 11.01.2022
IIpunsTa B neuars 25.04.2022

Abacc Moxammen HOcud, a. M. H., iperiogasareins, kadenpa MmareMaTuky, HaydHs1id kommemk, YHUBEPCUTET
bBacpel, bacpa, HUpak.

ORCID: https://orcid.org/0000-0003-1095-9963

E-mail: mohammed.abass@uobasrah.edu.iq

Amp-3amuns Kycait C. A., a. M. H., To1IeHT, kKadeapa Matematuku, HaydHbIH Komemk, YHUBepCUTET bacpsl,
Bacpa, Upaxk.

ORCID: https://orcid.org/0000-0003-0888-638X

E-mail: qusay.abdulaziz@uobasrah.edu.iq

HutupoBanue: M. 0. Abacc, K. C. A. Anp-3amuis. O tensope Beiins ACR-mHorooo0pasuit kinacca Cho
¢ npunoxenusamu // UzBectus MHCTUTYTa MareMaTHKM U MHGOPMATUKU YIMYPTCKOTO TOCYAapCTBEHHOTO
yHuBepcurera. 2022. T. 59. C. 3-14.

14



