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We consider the p(x)-Laplacian equation with a Dirichlet boundary value condition
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existence of weak solutions for this equation.
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Introduction

The problem studied in this paper concerns the p(x)-Laplacian operator and the variable ex-
ponent p(z). The study of various mathematical problems with variable exponents has received
considerable attention in recent years, as these problems model several physics concerning ther-
morheological fluids [7], image restoration [9], electrorheological fluids [21,22] and elastic mate-
rials [27]. The p(x)-Laplacian is a generalization of the p-Laplacian, and it has more complicated
nonlinearities than the p-Laplacian. Due to its inhomogeneous characteristic, it is reasonable to
expect that the p(z)-Laplacian operator is suitable for modelling inhomogeneous materials. Re-
cently, several works devoted to problems involving the p-Laplacian operator have been extended
to the case of the p(x)-Laplacian operator. We can cite in this context the papers [4,6,19,20,24]
and the references therein.

Consider the following problem with a Dirichlet boundary condition

0.1
u =0, x € 010, ©.h

{—Ap(x)(u) + |u|P® =2y = g(x,u, Vu), €9,
where —A, ) (u) = —div (|Vu[P®~2Vu), Q € RY is an open bounded domain, p(-) is a variable
exponent satisfying some conditions to be seen in the paper suite and g is a Carathéodory function
satisfying a growth condition with a variable exponent that is suitably controlled by p(-).

For g independent of Vu, the authors in [18] have shown the existence of infinitely many pairs
of solutions for this problem by applying the Fountain theorem and the dual Fountain theorem
respectively. When g(z,u, Vu) = |u|9®~2u, Alsaedi [5] studied this problem as a perturbed
non-homogeneous Dirichlet problem. Several others have studied the problem (0.1) without the
term |u[P®) =2y with different methods in both cases where g is dependent or not on Vu (see
for example [3, 13,16,23]). Note that, by passing the term |u|P®)=2y to the right in (0.1) and
posing f(x,u, Vu) = g(z,u, Vu) — |u|?®~2u, we find the problem (1) of [3] and the problem (1)
of [23]. But the growth conditions (f3) in [3] and (H) in [23] will no longer be satisfied because
of the presence of an exponent p(-), although we will adopt this condition for ¢ in our paper. For
example, for ¢ = 0, we will have that | f(z,u, Vu)| = |u(x)|P®~! does not satisfy (f5) of [3]

15



or (Hy) of [23]: here, the exponent ¢(-) of these assumptions attains p(-) and we no longer have
gt < p~. In this paper we prove the existence of weak solutions for problem (0.1) with a growth
condition similar to (f2) in [3] and (H) in [23] but only satisfied by g, as part of f and not by
the entire f, despite the appearance of the exponent p(-).

Fan and Han [12] discussed the existence and multiplicity of solutions of the following
p(x)-Laplacian equation in RY:

— Ny (0) + [uP@ 20 = f(z,u), xRN,
€ WhHe) (RN,

This problem was later studied by Ge and Lv [15] by adding a potential term and using
the mountain pass theorem and vanishing lemma. They obtained a weak solution u, of the
perturbation equations. They proved that u) tends to u, a nontrivial solution of the original
problem, when A — 0.

In this paper, motivated by the above work, we study the problem (0.1) using another approach
based on the topological degree method constructed by Berkovits [8] for some classes of operators
in Banach reflexive spaces. The reader can refer to [1-3, 8] and the references therein for more
details about this method.

This paper is organized as follows. Section 1 is reserved for some mathematical preliminaries.
In Section 2, we give our basic assumptions, some technical lemmas, and also give and prove our
results of existence.

§ 1. Mathematical Preliminaries
§ 1.1. Definitions and proposition

Let us start with a short reminder of the classes of operators mentioned in the introduction
and of an important proposition which will be the key to proving the existence of at least one
weak solution of the problem (0.1).

Let X be a real separable reflexive Banach space with dual X* and with continuous pairing
(-,-) and let 2 be a nonempty subset of X. The symbol — (—) stands for strong (weak)
convergence; (u,) denotes a sequence (n € N) and lim sup denotes the superior limit given by,
for a sequence (v,,),

limsup v, := lim (sup vy,).
n—=00 yy>p
Let Y be a real Banach space. We recall that a mapping F': Q2 C X — Y is bounded, if it takes
any bounded set into a bounded set; F' is said to be demicontinuous, if for any (u,) C Q, v, — u
implies F'(u,,) — F(u); F is said to be compact, if it is continuous and the image of any bounded
set is relatively compact. A mapping F': Q@ C X — X* is said to be of class (S, ), if for any
(u,) C Q with u, — w and lim sup(Fu,, v, —u) < 0, it follows that u,, — u; F' is said to be
quasimonotone, if for any (u,,) C Q with u,, — u, it follows that lim sup(F'u,,, u,, — u) > 0.

For any operator F': 2 C X — X and any bounded operator 7" : €33 C X — X* such
that 0 C 2y, we say that F' satisfies condition (S, )r, if for any (u,) C Q with w, — u,
Yn := Tu, — y and lim sup(Fu,,y, — y) < 0, we have u,, — u. For any 2 C X, we consider
the following classes of operators:

Fi1(R2) :={F: Q — X | F is bounded, demicontinuous and satisfies condition (5, )},
Frp(Q) :={F: Q— X | F is bounded, demicontinuous and satisfies condition (S, )r}
Fr(Q2) :={F: Q — X | F is demicontinuous and satisfies condition (S )r}.
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Proposition l.1. Let S: X — X* and T: X* — X be two operators bounded and
continuous such that S is quasimonotone and T' is a homeomorphism, strictly monotone and of

class (S4). If
A={ve X" |v+tSoTv=0forsomet € [0,1]}

is bounded in X*, then the equation
v+SoTv=0
admits at least one solution in X™*.

Proof. Since A is bounded in X*, there exists R > 0 such that

x+ < Rforallv € A.

[

This means that v + ¢S o Tv # 0 for all v € OBr(0) and all ¢ € [0,1], where Bg(0) is the ball
of center 0 and radius R in X*. Thanks to the Minty—Browder Theorem [26, Theorem 26A],
the inverse operator L := T~ is bounded, continuous and of type (S;). From [8, Lemma 2.2
and 2.4] it follows that

I+SoT e FT(BR(O)) and [ =LoT € FT(BR(O))

Since the operators /, S and T are bounded, / 4+ S o 7' is also bounded. We conclude that

[+ S50Tc FT,B(BR(O)) and [ € FT7B(BR(O)).

Consider a homotopy H: [0, 1] x Br(0) — X* given by

H(t,v) :==v+tSoTv for (t,v) € [0,1] x Bg(0).

Let us apply the homotopy invariance and normalization property of the Berkovits degree (which
we denote by d) introduced in [8], we get

d(I 4+ S oT,Bgr(0),0) =d(I, Bg(0),0) =1,
and hence there exists a point v € Br(0) such that
v+ SoTv=0.

§ 1.2. Functional framework

In the sequel, € is an open bounded domain in RY (N > 2) with a Lipschitz boundary 92
(that is 02 is “sufficiently regular” in the sense that it can be thought of as locally being the
graph of a Lipschitz continuous function).

In order to discuss the problem (0.1), we start with the definition of the variable exponent
Lebesgue spaces LP()(Q) and the variable exponent Sobolev spaces W, (')(Q), and some prop-
erties of them; for more details, see [14,17].

Let us denote

C.(Q)={heC(): h(x) > 1 for every z € Q}.

For any h € C'(Q), we write

h™ :=minh(z), h*:=maxh(x).

zeQ zeQ

17



For any p € C,(£2), we define the variable exponent Lebesgue space by
LPY(Q) = {u | u: Q — R is measurable and py((u) < oo},
where

o () = [ Jula) da,
We consider this space to be endowed with the so-called Luxemburg norm:
Jullpy = inf{A > 0: gy () < 1
We define the variable exponent Sobolev spaces W) (Q) by
WPO(Q) = {u € LPY(Q): |[Vu| € LFD(Q)}
equipped with the norm
[ullwrrer = llullpey + 1Vullpe)-

The space W, ") (Q) is defined by the closure of C5°(€) in W1*()(Q). With these norms, the
spaces LPO) (), WP (Q) and WP (Q) are separable reflexive Banach spaces.
p 0 /

The conjugate space of LP)() is L')(Q) where 5 + 1 = 1. For any u € L*0)() and

v € LP'0)(Q), the Holder inequality holds [17, Theorem 2.1]:

/uv dx
Q

If p(), q(-) € CL(Q), q(-) < p(-) a.e. in Q then there exists a continuous embedding
LPO(Q) — LIO(Q).

In this paper, we suppose that p(-) satisfies the log-Holder continuity condition, i.e., there
exists C' > 0 such that for all z,y € €2, © # y, one has

1 1
< <27 + p,_) ullpollvllpey < 2lullpollvllye)- (1.1)

Ip(x) — p(y)|log (e + ) <C. (1.2)

|z —yl

An interesting feature of generalized variable exponent Sobolev space is that smooth functions
are not dense in it without additional assumptions on the exponent p(-). However, when the
exponent satisfies the log-Hdlder condition (1.2), we recall the Poincaré inequality (see [11,
Theorem 8.2.4] and [14, Theorem 2.7]): there exists a constant C' > 0 depending only on €2 and
the function p such that

lullpty < ClIVullyey, Yu € W™ (). (13)

In particular, the space VVO1 P (')(Q) has a norm given by
[ullipey = Vullpe,

which is equivalent to the norm || - ||yy1.s(). Moreover, the embedding Wy *)(Q) — LPO(Q) is

compact (see [17]). The space (W, (')(Q), | - |l1,p¢)) is also a separable and reflexive Banach
space.
The dual space of Wy ?)(2), denoted W~17'()((2), is equipped with the norm

N
Wl =1y = mE{[lvollyr ) + D lvilleo 3
=1

where the infimum is taken on all possible decompositions v = vy — div F with vy € LP'0)(Q)
and F = (vy,...,ox) € (LPO(Q)N.
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Proposition 1.2 (see [14]). Let (u,) C LPO)(Q) and u € LPY)(Q). Then we have
D ulloty 21 =l < gy () < Hlullyy

2 iy <1 = [l < oy () < [lull:

3) limy oo [|un — ullpey =0 & limy o0 pp() (U — 1) = 0;

4) lullpey < ppey(u) +1;

5) poy(w) < [l + [l

In this paper, we will use also the following equivalent norm on W?)(Q):

. Vu U
lullyy = E{A > 0 pypy (T) + po <X) <1}
If we denote I(u) = pp(.)(Vu) + ppy(u), then, similar to Proposition 1.2, we have
Proposition 1.3 (see [10]). Let (u,) C W'P)(Q) and u € WHPO(Q). Then we have

D) llullpy =21 = JullP™ < I(u) < [lull”;

2) flullpy <1 = ull" < I(u) < |JullP";

3) lim, oo ||t —ul| =0 < limy, oo [ (u, —u) = 0;
4) |lull < I(u) +1;

5) I(u) < [JullP” + [Jul".

§ 2. Basic assumptions and main results

In this section, we study the strongly nonlinear problem (0.1) based on the Berkovits degree,
where Q0 € RY, N > 2, is an open bounded domain with a Lipschitz boundary 02, p € C,(Q)
satisfies the log-Holder continuity condition (1.2) such that 1 < p(x) and g: Q@ x R x RY — R is
a real-valued function such that:

(g91) g satisfies the Carathéodory condition, that is, g(.,7, () is measurable on (2 for all (1, () €
€ R x RY and g(, ., .) is continuous on R x RY fora.e. z € ;

(92) ¢ has the growth condition
lg(z,m,O)| < elk(z) + |n|?@~1 4 |¢[9@)1)

for a.e. z € Q and all (n,¢) € R x RN, where ¢ is a positive constant, k € L *)(Q) and
1<q <q@)<q" <p.

Lemma 2.1 (see [3, Lemma 2]). Suppose that assumptions (g,) and (g2) hold. Then the
operator S': Wol’p(m)(Q) — W=L'@)(Q) defined by

(Su,v) = _/(9(37,% Vu))vdr, u,v € Wol’p(x)(Q)
Q

Is compact.
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Let A: WoPY(Q) — W-1#'0)(Q) be the operator defined by
(A(u),v) = / (IVuP®) 2y - Vo + [u|f@2u) dz,  u,v e WP (). (2.1)
Q
Lemma 2.2 (see [12, Lemma 3.1]). A is strictly monotone, bounded homeomorphism and
is of type (S4).
Let us first define a weak solution of the problem (0.1).

Definition2.1. We say that u € Wol’p(')(Q) is a weak solution of (0.1) if

/(|Vu\p(m)2Vu Vo [u]P®2uw) do = /(g(az, u, Vu)vde Vo € Wy (Q).
0 Q

Theorem 2.1. Suppose that the assumptions (g1) and (g2) hold true. Then there exists at
least one weak solution of the problem (0.1) in Wol’p(')(Q).

Proof LetAandS: Wol’p(')(Q) — W0(Q) be as in (2.1) and Lemma 2.1 respectively.
Then u € W, * (')(Q) is a weak solution of (0.1) if and only if

Au = —Su. (2.2)

Thanks to the properties of the operator A seen in Lemma 2.2 and in view of Minty—Browder
Theorem [26, Theorem 26A], the inverse operator T := A~': W-Lr'0O(Q) — WoPY(Q) is
bounded, continuous and of type (S, ). Moreover, note from Lemma 2.1 that the operator S is
bounded, continuous and quasimonotone. Therefore, equation (2.2) is equivalent to

u=Tvand v+ SoTv=0. (2.3)
To solve equation (2.3), we will apply the Proposition 1.1. It is sufficient to show that the set
A:={ve W O(Q) | v+tSoTv =0 for some ¢ € [0,1]}

is bounded.
Indeed, let v € A and set u := T'v, then, by the equivalence of the norms || - ||1 ¢y and || - ||,
there exists a > 0 such that ||Tv||1 ) = [Jul|1p0) < of|ull.

If ||u|| < 1, then || T[], p(.) is bounded. If ||u|| > 1, then we have by Proposition 1.3
17017 ) < o ull”™ < o I(u).

We get by the growth condition (gg), the Holder inequality (1.1), the inequality (5) of Propo-
sition 1.2 and the Young inequality the estimate

ITol . < o I(u)
= o (Au,u)
a? (v, Tv)

= —ta? (SoTv, Tv)
= tozp_/ g(x,u, Vu)udx

< const ( / |k(z)u(x)|de + pgey( / V| "y d)
q q 1 1
< const (2 el + lf + )+ =0y (V) + =y (1)
+ - +
< const ([|ully) + HUHZ(.) + HUHZ(.) + HVUHZ(.))-
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From the Poincaré inequality (1.3) and the continuous embedding LP() — L90) we can deduct
the estimate B .
T[T ) < const ([|Tv]lvpe) + [T0]]7 ,)-

It follows that {7T'v|v € B} is bounded. Since the operator S is bounded, it is obvious from (2.3)
that the set A is bounded in W~2()(Q). Hence, in virtue of Proposition 1.1, the equation
v+ S o T has at least one non trivial solution ¥ in W~5'()(Q). So, 4 = T'v is a weak solution
of (0.1).

Example2.1. As examples of functions g satisfying the assumptions (g;) and (gz), we can
take:

e g(x,n,¢) = g(n) = c|n|9*n where c is a positive constant and 1 < ¢ < p~.
o g(w,n,¢) = g(z.n) = [n|"?nlog(1 + |n|) where ¢ € C1.(Q) with ¢ < p~.

o g(z,n,¢) = |n|*@ "y + |1 or g(w,n,¢) = k(x) + 0|72y + |¢]*)"" where
k € LP'@(Q) is positive and ¢q € C,(Q) with ¢+ < p~.
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M. Aum Xammy, 3. X. Pamu
CyurecTBoBaHHUe ¢JI1a0bIX peleHuii 1is p(x)-ypaBHenus Jlamiaca yepe3 TONMOJOTHYECKYI0 CTENEeHb

Kniouegvie cnosa: cnaboe perienue, rpaHnuHble yciaoBus Jupuxie, npoctpanctBo CoboneBa ¢ mepeMeH-
HOIl SKCIIOHEHTOM, TOIOJIOTHYECKasi CTETeHb, p()-JlaliacuaH.

YIK: 517.95
DOI: 10.35634/2226-3594-2022-59-02

Mp&I paccmarpuBaem ypaBHeHue Jlamaca ¢ p(x)-namiacuanoM ¢ TPaHHYHBIM yCIoBUeM JlupHxiie

r)—2,, __
— Ay (u) + ]u\p( =2, = g(z,u,Vu), x €,
u =0, x € 01).
Hcnonb3yst TOMONOTUYECKYIO CTENEHb, NPEIIOKEHHYI0 BepKOBHIIEM, MBI JOKAa3bIBAEM, IIPH COOTBETCTBY-
IOIMX MIPEITIONIOKEHUAX, CYIECTBOBAHUE CIa0bIX PEIIEHUH IS 9TOr0 YpaBHEHHUS.
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