Izvestiya Instituta Matematiki i Informatiki Udmurtskogo  Gosudarstvennogo  Universiteta
2023. Volume 61. Pp. 94-113

MSC2020: 49N79, 49N70, 91A24

© B.T. Samatov, U. B. Soyibboev

DIFFERENTIAL GAME WITH “LIFELINE” FOR PONTRYAGIN’S CONTROL
EXAMPLE

The main purpose of this work is to solve one of the main problems of Isaacs, i. e., a game with a “lifeline”
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Introduction

The fundamental theory of differential games was formulated by R. Isaacs [1], L.S. Pon-
tryagin [2], N.N. Krasovskii [3], B.N. Pshenichnyi [4], L. A. Petrosjan [5], A. Friedman [6],
W. H. Fleming [7], L.D. Bercovitz [8], A. A. Chikrii [9], A.1. Subbotin [10] and others.

In the theory of differential games, pursuit—evasion problems occupy a special place due to a
number of specific qualities. One of them is expansiveness of applications of various methods and
originality of the obtained results [1,2,4,5,11,12]. This quality was clearly apparent in the model
problems. For example, R. Isaacs’ example called “a game with a lifeline” [1, Problem 9.5.1] with
simple dynamics of the players was solved by L. A. Petrosjan introducing a special strategy [5]
called strategy of parallel approach (briefly, II-strategy). Later, [I-strategy was efficiently applied
to solve other kinds of pursuit games [9, 13-18]. Later on, A. A. Chikrii [9] worked out the
resolving functions on the basis of combination of ideas of II-strategy and first direct method of
L.S. Pontryagin [2].

A.A. Azamov based on B. N. Pshenichnyi’s work [4] gave analytical formula for II-strategy
suited for all cases of maximal velocities of the players and inducted a recurrent relation for
attainability domain [13]. Such a relation turned out effective in solving of pursuit-evasion
problems and “a game with a lifeline” with different variants of constraints for control functions
of the players [14, 15].

Another important differential game famous under the name ‘“control example” was con-
sidered by L.S. Pontryagin and for this game, further important results were achieved in the
works [11,12,16]. Differ from “a game with a lifeline”, the Pontryagin control example deals
with inertial objects and is therefore appreciably complicated. Equations of a pursuer and an
evader in the example describe the motion of two inertial objects with allowance for friction
forces. In [19], for this example, [-capture problem was solved by exchanging given differential
equations to a linear normal system. In [2], Pontryagin’s example with many players having the
same dynamic and inertial resources was studied and proved that matching of the phase coordi-
nates is a pursuit condition. In the work [12] of N. N. Petrov, a ’soft” pursuit for the Pontryagin
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example of n pursuers and one evader was considered and proved that matching of the phase
coordinates and that of the velocities are pursuit conditions. In [20], D. A. Vagin and N. N. Petrov
obtained sufficient conditions for the capture of at least one evader for the Pontryagin example
with many participants and phase constraints imposed on the position of evaders with identical
dynamic and inertial resources of players, and with all evaders using the same control.

The problems in the theory of differential games are basically studied in the cases where
control functions of players are subject to geometric, integral or their mixed constraints (for
instance, [21-25]). Nevertheless, various type constraints on controls have been provoking a con-
siderable interest in a number of applied problems such as economical, biological and ecological
problems.

At the present time, from the standpoint of applied and theoretical perspective there is a sub-
stantial enthusiasm to explore various type problems of optimal control for more complex systems
when different types of stationary and non-stationary constraints are imposed on the controls (for
example, [26-28]). Differential games under phase constraints might be involved in such prob-
lems where the attainability domain of players has a considerable significance. Construction
of the attainability domain is regarded as the remarkable result in the problems of avoidance
of encounter [5] and in the conflict problems [29-34] as well. In the work [35], the authors
investigated the differential game with a “lifeline” for the inertial movements under geometric
constraints on controls of players and the dynamics of the attainability domain of an evader was
examined through finding solvability conditions of the pursuit-evasion problems in favor of a
pursuer or an evader.

In this paper, pursuit-evasion problems and a “lifeline” game are considered for Pontryagin’s
control example when both players have the same movement dynamics. In the pursuit problem,
an analogue of [I-strategy is constructed and a sufficient condition of capture is determined. In the
evasion problem, a constant control function is proposed as a strategy of an evader and a sufficient
condition of evasion is found. Further, an explicit formula for the attainability domain of players
is generated. Monotonicity conditions of the attainability domain with respect to embedding and
a sufficient condition of defining a solution of the game with a “lifeline” are obtained.

§ 1. Formulation of the problems

We will consider a differential game of two players. Let in the Euclidean space R", a con-
trollable player X (the pursuer) follow another controllable player Y (the evader). Assume that
positions of the players X and Y are described by x and y, respectively in R".

Let movements of the pursuer and the evader be based on the following differential equations
with initial conditions:

X:i+at=u, x(0)=mxy, @(0)=x9y, (1.1)

Yig+ay=v, y(0)=yw, Y(0)=y, (1.2)

where x,y,u,v € R", n > 2, a > 0; 19, Y10 are the initial positions of the players X and Y, and
T20, Yoo are their initial velocity vectors. Here it is required that x15 # y19 and xo9 = yao.

The parameter u in (1.1) is a control of the pursuer and it will be thought of as a measurable

function u(-): Ry — R™. On this vector-function, we put the geometric constraint (briefly, the
(G-constraint) of the form

|u(t)| < a almost everywhere ¢ > 0, (1.3)

where « is a given positive parametric number and it expresses the maximal value of acceleration
of the pursuer.
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Likewise, the parameter v in (1.2) is a control of the evader and it will be regarded as a
measurable function v(-): R, — R™. On this vector-function, we put the G-constraint

|v(t)| < B almost everywhere t > 0, (1.4)

where [ is a given non-negative parametric number and it expresses the maximal value of accel-
eration of the evader.

Control functions u(-) and v(+) of the players depend on time ¢, ¢ > 0. The set of all control
functions u(-) (v(+)) satisfying the constraint (1.3) (the constraint (1.4)) is denoted by U (by V).

Definition I.1. A measurable function u(-) € U (v(-) € V) is called an admissible
control of the pursuer (of the evader).

By equations (1.1) and (1.2), for controls u(-) € U and v(-) € V, the triplets (210, 220, u(-))
and (y10, Y20, v(+)) pose the trajectories

1 t
x(t) = w10 + 70 (1 — e“t> + = / u(s) (1 - e“(ts)>ds, (1.5)
a aj,

y(t) = yio + % (1 — e“t) + % / v(s) <1 — e“(ts))ds (1.6)
0

of the players X and Y, respectively.

Assume that a closed subset L called the “lifeline” is given in R". The main target for the
pursuer is to catch the evader, as it were, to obtain the equality x(t.) = y(t.) at some ¢, > 0
while the evader stays in the zone R™ \ L. The main goal for the evader is to reach the zone L
before being caught by the pursuer, or to sustain the relation x(¢) # y(t) at each ¢ € [0, +00), and
if this is not possible, then to extend an encounter time asap. We need to remark that the zone L
does not restrict motion of the pursuer. In addition, it is supposed that the initial positions xo,
Y10 satisfy the conditions z19 # y19 and y19 € L at the beginning of the game.

It is known that if control functions of the players X and Y depend only on time ¢, ¢ > 0,
then they don’t guarantee to solve the games of pursuit and evasion. Thus, the acceptable types
of controls involve being strategies. Below we are going to present the key definitions and
conceptions.

First off, let us write the notations

2(t) = x(t) —y(t), 2(0) =210 =210 — Y10, 2(0) = 220 = 20 — Y20 (1.7)
Then according to (1.1), (1.2), (1.7), we get the initial value problem
Z4az=u—v, z(0)= 2z, 2(0)= 299 =0. (1.8)

Consequently, as an alternative to the game (1.1)—(1.4), we have generated the game (1.3), (1.4),
(1.8), or for brevity, the game (U, V).
Later, we will use the symbol B, to denote the ball of a radius g centered at the origin.

Definition 1.2. It is said that a function u: V x R" — U is a strategy of the pursuer if:

(1) for any control v(-) € V, the inclusion u(-) = u(v(+), 210) € U is satisfied. Here we term
the function u(-) = u(v(+), z10) as an implementation of the strategy u(-);

(2) for every v1(-),ve(-) € V and for each ¢, ¢t > 0, the equality vi(e) = vq(e) is fulfilled
almost everywhere on [0, |, then u;(e) = uy(e) is true almost everywhere on the same interval,
where u;(-) = u(v;(+), 210), @ = 1, 2.

A special case of a strategy can be given by a mapping u: Bs x R" — B,, which is a Borel
measurable function with respect to v, v € Bg.

96



Definition 1.3. We say that a strategy u = u(v, z10) is a parallel pursuit strategy, or
briefly, a I[I-strategy if, for any control v(-) € V, the solution z(¢) of Cauchy’s problem

Z4az=u(v(t),z9) —v(t), =2(0)=2zy9, 2(0)=0
can be transformed into the form
z(t) =T(v(-),t)z10, I'(v(-),0) =1,

where I'(v(-), t) is a scalar function with respect to ¢, ¢ > 0, and in general, this function is called
an approach function in the game of pursuit.

Definition 1.4. AIl-strategy is said to be winning for the pursuer on the interval [0, T'(u)]
in the game (U, V) beginning from (210, 290) if, for any control v(-) € V, there exists some time
t* < T'(u) such that z(t*) = 0. If this property is valid, then 7'(u) is called a guaranteed
capture time.

Definition 1.5. A control function v,(¢) : R, — V is called a strategy of the evader if
v.(t) is a Lebesgue measurable function with ¢, ¢ > 0.

Now we are going to treat the game (U, V) from the perspective of the player Y.

Definition 1.6. A strategy v.(-) € V is said to be winning for the evader in the game
(U, V) beginning from (210, 290) if, for any control u(-) € U, the solution z(¢) of Cauchy’s
problem

Z+az=u(t) —w(t), 2(0) =z, 2(0)=0,
is not zero, i.e., z(t) # 0 at each t € [0, +00).

In this article, the following game problems will be individually investigated:

Problem 1.1. The problem of pursuit. To construct a II-strategy for the pursuer and to
find a sufficient condition of capture.

Problem 1.2. The problem of evasion. To set an optimal strategy for the evader and to
estimate how to alter the distance |z(¢)| between the pursuer and the evader.

Problem 1.3. To construct an attainability domain of the pursuer (the set of capture points).

Problem 1.4. To solve the “lifeline” game.

§ 2. Solution of the problem of pursuit

In the present section, the [I-strategy will be defined on the basis of the works [4,5,13-15,35]
and a sufficient condition of capture will be taken.

If the players X and Y single out their admissible control functions u(-) € U and v(:) € V,
respectively, then using (1.5)—(1.7), obtain the vector-function

2(t) = z10 + % /Ot (u(s) —v(s)) (1 — e_“(t_5)> ds. (2.1)

On account of (2.1), the pursuer aims for the attainment of the equality z(¢.) = 0 at some ¢, > 0,
while the evader strives to continue the relation z(t) # 0 for each ¢, ¢t > 0.
Consider the function

2
pt)=e " +at—b, b=1+ ‘;%Zwﬁ‘ (2.2)

The following assertion will be used to show the existence of capture time.
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Proposition2.1. Suppose o > (3. Then the equation
p(t) =0, t>0, (23)
has one and only one positive root that will be denoted by T.

To construct the II-strategy, suppose that the pursuer is aware of the initial data z19, o, 5 and
the value v(t) at the current time ¢.

Definition 2.1. We say that the vector-function
un (v, 210) = v — (v, 210)&10, (2.4)

is the Il-strategy in the game (U, V), where

(v, 210) = (v,€10) + V/ (v, €10)2 + % — [v]?, 2.5)
&10 = z10/|710], and (v, &1g) is the scalar product of the vectors v and &;4 in R™.

It is worth noting that v(v, z19) in (2.5) is ordinarily termed a resolving function.
Here are some elementary properties of (2.4) and (2.5).

Proposition2.2.
a—pF<v,z9) <a+p (2.6)
if and only if o > f.
Proposition2.3. |upn(v, z10)| = o holds for any v € Bg.

Definition 2.2. For an arbitrary control v(-) € V, the scalar function

L(v(-),t) = )s 210) 1—6 alt= S)) ds (2.7)

(1,|2’10|
is called an approach function of the players X and Y if a > f3.

Lemma2.1. Let « > 3. Then for any control v(-) € V:
(@) T'(v(+),t) monotonically decreases with t, t > 0,

b) I at each t € |0,T| is estimated as
() T(u(), ) 0.7]

[y(t) < T(0(), 1) < Do), 2.5)
where

Iy(t)=1- ;;wﬁ (e +at—1),

Dy(t)=1-— ;@15 (e +at —1).

P ro o f. a) Determine the ¢-derivative of I'(v(-),¢) and from (2.6) it follows that

dl'(v(+),t / —a(t—s) -8B, _u
= , 2 *ds <2 @ —1)<0.
dt |2’10| 10 a|210| ( ) -
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b) Relying on the lemma about minimum-maximum in [36], we make the following estimates:

C(v(-),t) <1-— b min /0 Y(v(s), 210) (1 — e_“(t_s)) ds <

a|2’10| v(-)eV

1 1
<1 (i L) mip (o) = o).
- alzio| a( ¢ ) 52%;7(@ “0) 2(t)

By the same lemma, we obtain

1 1 ot B
t)y=1- M(t ——(1-e¢ )) maBXfy(v,zlo) =

a vEBg
1 t
=1- max / 7(1}(5),210)(1 — e*“(tfs))ds < T'(v(-),1),
a|2’10| v()EV Jy
and the proof is complete. 0

We can now formulate our main result for the problem of pursuit.

Theorem 2.1. If a > 5, then the ll-strategy (2.4) will be winning for the pursuer on the
time interval [0, ﬂ where T is the positive root of (2.3).

Proof. Let us first assume that the evader decides on any control v(-) € V and the pursuer
utilizes the Il-strategy (2.4). Then by virtue of (2.1) and (2.4), we have

2(t) = 210 — 10 /t(l — e*“(t*s))y(v(s), 210) ds. (2.9)
0

a
Since &19 = z10/| 210/, rewrite (2.9) as
2(t) = T'(v(-), )20, (2.10)

where I'(v(+),t) is the same as (2.7). Taking (2.8) into consideration yields

D(u(),1) < Ta(0). @.11)
Using (2.2), reduce I'y(t) to the form
ralt) = 2ol

From Proposition 2.1 it follows immediately that at a moment f, the equality p (f) =01is
satisfied. We thus get I'y (f) = 0 and, in consequence, (2.11) indicates that there exists a

finite time 7}, € [0, ﬂ satisfying I'(v(+), 7.) = 0. For this reason, considering (2.10) we obtain
z(T,) = 0, which completes the proof. O

§ 3. Solution of the problem of evasion

In this section, a constant function will be taken as a strategy of the evader and a sufficient
condition of evasion will be given. Moreover, we will substantiate that a strategy of the evader is
an optimal strategy and the time 7" stated in Theorem 2.1 is an optimal capture time.

Definition 3.1. In the game (U, V), the control function

v.(t) = —B&w0 (3.1)

is called a strategy of the evader, where 19 = z19/|210]-
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Let us state our main result for the problem of evasion.
Theorem 3.1. (a) If a« > [, then the strategy (3.1) will be winning for the evader in the
time interval |0, T);

(b) If « < 3, then the strategy (3.1) will be winning for the evader in the time interval [0, +00)
and for the distance between the players X and Y, the following estimate is satisfied:

(1)) > 210l if a=p,
. |z10|—((a—ﬁ)(e_“t+at—1)/a2>, ifa < f.

Proof. (a)Let a > (. Suppose that u(-) € U is an optional control of the pursuer and the
evader applies the strategy (3.1). Then by means of (2.1), we have

2(t) = 210 + 1 /t u(s) (1 - e*“(t*‘q)) ds + @ /t(l - e*“(t*s)) ds. (3.2)
0 0

a a

Taking (1.3) into account, the absolute value of (3.2) can be evaluated from below as follows:
t 1 t
210 + @/ (1- e*“(t*s)) ds' - —/ u(s)(1— e*“(t*‘q)) ds| >
0 0
1 I
> |z10| <1 + b (t - =(1- e“t))) - —/ lu(s)|(1 - e*“(t*‘q)) ds =
a Jo

a

alzio| a
a—pf 1
= 1-— (t——l— ﬂ”) = To(t).
|2’10|< alz10)] a( € ) ) |210[T"2(2)

Based on the proof of Theorem 2.1, we can assert that the relation

|2(t)| > |z10/T2(t) > 0

is true for each t € [O, f)
(b) Let o < B. Then obtain the estimate as above once again and by (2.8), the following
inequality is derived:

a—pf

a2

|2(t)] > |z10] — (e +at — 1) =T5(t). (3.3)
Due to I's(0) = |2y| and T's(¢) > 0 in the interval [0, +-00), it is evident that min,o Is(t) = |210].
This leads to z(t) # 0, which follows from (3.3), for all ¢, t € [0, +00). The proof is complete.

§ 4. Attainability domain of players and its dynamics

In Theorem 2.1, we have proved that the pursuer seizes the evader through the II-strategy (2.4)
at some point in R"™ by the time Tiffa > B. Hence we are going to construct the set of capture
points for the game (U, V).

The triplet (y10, Y20, v(+)), v(:) € V, produces the trajectory of the evader in the form (1.6)
and the triplet (x19, 220, urr(v(+), 210)), (v (+), z10) € U, yields the trajectory

z(t) = 210 + % <1 - e_at) + ! /t ur(v(s), z10) (1 - e_a(t_s)> ds 4.1)
0

a

of the pursuer, where ¢t € [0,7.], 0 < T, < f, and T, is the encounter time of the players X
and Y, i.e., z(7.) = y(T,) holds. Accordingly, for each pair (z(t),y(t)) on [0,7.], we will
consider the multi-valued mapping

(1), y(t) = {w: [w —2(®)] = (a/B)lw — y(®)]}, (4.2)
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and also, at £ = 0 we have

Qz10, y10) = {w: |w — z10| = (a/B)|w — 10| }- (4.3)

Note that y(t) € Q(z(t),y(t)) for each t € [0,T,] is valid owing to |z(t)|] > 0 on the
interval [0, T].

Remark 4.1. In fact, the trajectories z(t), y(¢) and the set Q(z(t), y(¢)) directly depend on how a
control v(-) € V to be picked. For simplicity, we ignore this dependence.

Lemmad4.1. For the set (4.2),

Qa(t), y(t) = z(t) + T(v(-), 1) [ U210, y10) — T10] (4.4)

is satisfied, where I'(v(-), t) is identical with (2.7) and

Q(z10, Y10) = 10 — c(210) + 7(210) B, 4.5)
2
c(z10) = %1;2, r(z10) = a26|_2160|2, (4.6)

and B is the unit ball centred at the origin in R".

Proof. Since z(t) = z(t) — y(t) (see (1.7)), it derives readily from (4.2) that the inclusion
w € Qz(t),y(t)) — z(t) is equivalent to

|w] = (a/B)|w + 2(1)]. (4.7)
By reason of (4.2) and (4.7), the set (2(¢) can be represented as
Qa(t), y(t) = 2(t) + Qu(2(t), Qu(2(t) = {w: |w] > (a/B)|w + 2(1)]}. (4.8)

Let us confirm that the set {2,(z(t)) consists of a sphere. To do this, square both sides of (4.7)
and make the following simplifications:

Blwl? > o (Jw]” + 2(w, (1)) + [2()*);
(0 = B8%) [w]” + 20w, 2(t)) + o”[2(t)|* < 0.

Divide both sides of the last inequality by (a? — %), i.e

2 2 2
W] +2 <w, = i(22> + O;JZ_(%L <. (4.9)

2
Adding <a22(t)/ (a? — 62)) to both sides of (4.9), we attain

wf? +2 <”’ (ffi(gz> + (ﬁzf(th)Q _ (Offf( 2) ) C;'Z_(ty; )
(e o= ()

@?2(1) | _ apla(t)]
042 _ 62 - _ /82 :

or

'w + (4.10)
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So, the relation (4.10) is a sphere, which center is at the point c(2(t)) = —a?z(t)/ (a® — 8?)
and which radius is equal to 7(2(t)) = a8|z(t)|/ (a® — 5?), thereby descrlbmg Q,(z(t)) in (4.8) as

Qu(2(t) = {w: |w—c(z(t)] < r(z(t)}. (4.11)

Moreover, the set (4.11) can be written in the form $2,.(2(t)) = c(2(t))+7(2(t)) B (see [37, p. 24]),
and on that account it proceeds from (4.8) that

Q(x(t), y(t) = x(t) + Qu(2(t) = x(t) + c(2(1)) +r(2(t)) B. (4.12)
By (2.10) and (4.6), the functions ¢(z(t)) and r(z(t)) convert to the forms
c(z(t)) = —c(z10)T(v(+), 1), r(z(t)) =7(z10)T(v(-),1). (4.13)
Replacing (4.13) into (4.12) gives (4.4), and the proof is complete. U
Corollary 4.1. From Lemma 4.1 it may be concluded that at each t € [0,T.], the set
Qz(t),y(t)) is a ball of the radius r(z10)l'(v(-),t) centered at the point x(t) — c(z10)['(v(-), 1)
and the set Q)(x10,Y10) is a ball of the radius r(z10) centered at the point x19 — ¢(210).

Lemma 4.2 (main lemma). Let

W (a(t), y(t), 220) = Qa(), y(t) — 2 (1 — ™).

a
Then V(x(ta),y(ta), x20) C W(x(t1),y(t1),xe0) is true when ty < ty for any ty, ts € [0, T,).

Proo f. It is not difficult to claim that (1.4) is equivalent to

2
b S (a? = u(t)). (4.14)

l(t)[? < 2

From (2.5) we easily find

o —Jo(t)|* = v(v(t), 210) (Y(v(2), 210) = 2{v(t), &10))- (4.15)
Combining (4.15) with (4.14) and removing the brackets we get

2(° < (t), &10) B
/82 2_627

Add (B*y(v(t), z10)€10/ (a* — 62))2 to both sides of (4.16) and simplify the right side of the
result, i. e.,

()] + 7(v(t), 210) < “(v(t), 210)- (4.16)

2, 28%(v(t), &10) B2y(v(t), z10)€10 \ g,
‘U(t)‘ + W’Y(U(t),/zw) + ( o2 — 62 ) < o? — BQ’Y (U(t),zlo) +

(/32 A (o(d), ;12(»&0)2 _ (af e f“BQ)Q)m(t),zm) _ (QQ‘%BBQW(W@)Z,

62
a2 _ 627

or

(0(t), 210)610| < -2

v(t) + < m’y

(v(t), 210). (4.17)
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Clearly, the inequality

2
(v0+ 2 o0+

is valid for an arbitrary vector ¢» € R, |¢)| = 1. From this and (4.17) we determine

of

2

(v(t), z10)&10

(0(t), 210)€0, ¢> <

<v<t>+ B t), 210)60, w>< (0(t), 210). (4.18)

—p
Multiplying (4.18) by e~*=%) 0 < s < t, we take

<<v(t) + 52527( (®), zlo)&o) e =), w> < aﬁe 523 Y(v(t), 210)- (4.19)

Integrate (4.19) on [0, ¢] and obtain that

t 9 .
/0 <<U<S) i aQﬁ— 627(U(S>’2w)§10> o w> ds = za_ﬁm /0 Y(v(s), z10)e ") ds.
(4.20)

— gV

From the left side of (4.20) we get the following equalities:

/0 t<<v(s)+oﬂﬁf25ﬂ(v(s),zm)gm) —e(t=s) ¢>ds—

- /Ot<(v(8) - 7(0(8)7210)510) B @/)>d8 +< 62510, @/)> /:'Y(U(S),zlo)e_a(t—s) ds.

In view of the Il-strategy (2.4) and the vector ¢(zyp) in (4.6), from the last equality we obtain

{(005) + 52 (0to), 2000 ) e, Y s =
0 8

— </Ot ur(v(s), z10)e” ¥ ds, ¢> + {e(=10),9) /Ot’y(v(S),zm)e“(ts) ds.

|210]

(4.21)

By virtue of 7(210) in (4.6), the right side of (4.20) can be expressed as

Q@ ¢ ol r(z t —alt—s
— _ﬁﬁz /0 v(v(s), z10)e at=s) g — ‘ii)o‘) /0 v(v(s), z10)e (t=5) gs. (4.22)
As a consequence of (4.20)—(4.22), we deduce that
t . t
</ uH<U(S)’Zlo>€fa(tfs)dS7 1/}> + <C(210)777Z)> T(Z1o) / ’7(1)(8),210)6704(2573) ds < 0. (4.23)
0 0

|210]

Since, here, Q(z(t), y(t)) is mainly considered as the ball with a center and radius changing
in time, it is easy to calculate its support function F'(Q(z(t),y(t)), v) for any vector ¢ € R",
|| = 1 (see [37]). Then taking account of (2.7), (4.1), (4.4)~(4.6) and on the strength of the
properties of a support function, we take the ¢-derivative of F(Q(z(t),y(t)), ), i.e.,

%F(Q(x(t),y(t)), 1/’) - jtF( (t) + T (v(), 1) [7“(210)3 — c(zm)}, ¢) =
= LR(a(0),9) + F(r(z10)B — clza0), ¥) $T0(),1) =
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< : /t’Y(U(S)a z10) (1 — ea(ts))ds).
0

+ (T(ZIO)F(Ba ) — F(c(z1), w)) 1—
10), ) (see [37, p. 33]), from the latest equalities we

dt CL|210|

As F(B,v) = 1 and F(c(z10),%) = {c(
arrive at the relation

%F(Q(x(t),y(t)), V) = (e "wa0, 1) + </0 ur(v(s), z10)e” "9 ds, 1/1> +

i (c(210), ) — 7(210) /tfy(v(s), zlo)efa(tfs) ds.

|210] 0

N

(4.24)

Accommodating (4.24) we attain the following:

9 p(a(t).y(t) — 2 (1 — ), ¢) =

dt a
d d T20 —at
= %F(Q(l‘(t),y(t)), 1/1) - E (7(1 —e " )7 ’g[)) =

= (™% wa0, ) + </0t ui(v(s), z10)e ") ds, 1/1> +
n {c(z10), ) — r(210) /t

|210]

~y(v(s), zlo)e’“(t’s) ds — <e’“ta:20, 1/1>,

or

— </Ot uni (v(s), z10)e~ ) ds, 1/1> +?C(zlo)>¢> —r(210) /;7<U<8>, o)) ds,

As a result of (4.23), we see that

d

S (Qa(t),y(1) = =2 (1 =), ¥) <0

holds for every ¢ € R", |¢)| = 1. This finishes the proof. O
By Lemma 4.2, we will construct an attainability domain of the evader.

Lemma4.3. The inclusion
T
u(t) € Qw0 yr0) + (1 —e) (4.25)

holds for all t € [0, T.].

Proof On account of Lemma 4.2, we derive the relation

Qa(t), y() — 22 (1 — =) C Qw10 y10),

a
or
x
Qx(t), y(t) € Qx10, y10) + %(1 — ). (4.26)
Obviously, y(t) € Q(z(t),y(t)) on the interval [0, T,] (see (4.2)) and therefore from (4.26) it
proceeds the validity of (4.25), which completes the proof. U
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Definition4.1. We call the set

T
-~ T
Qx <9C1o, 220, Y10, T) = U{Q(ﬂho, y1o) + %(1 - e_“t)}

t=0

the attainability domain of the pursuer in the game (U, V), where T is the guaranteed capture
time (see Theorem 2.1).

Corollary4.2. If o0 = yo0 = 0, then the attainability domain of the evader consists of
the set Q(x10,y10) (the Apollonius sphere) in (4.3).

§ 5. Solution of the “lifeline” game

In the present section, the game (1.1)—(1.4) with the “lifeline” L will be solved to the advan-
tage of both players X and Y.

Definition5.1. In the “lifeline” game, the II-strategy (2.4) is said to be winning for the
pursuer on the time interval [0, 7 ] if, for an arbitrary control v(-) € V of the evader, there is

some moment ¢ € [0, T | such that:
(1) (i) - y(1); A
(2) y(7) &€ L at each T € [0, 1].
Theorem5.1. If a > [ and Qx(xlo,xQO,ylo,f) N L = 0, then the Il-strategy (2.4) will

be winning for the pursuer on the time interval [O, T} in the “lifeline” game.

P ro o f. The proof follows immediately from Theorem 2.1, Lemma 4.2 and 4.3. U
And now, we will consider the “lifeline” game from the point of view of the evader.

Definition 5.2. It is said that a control v,(-) € V is winning for the evader in the
“lifeline” game if, for an optional control u(-) € U of the pursuer:

(a) there is some finite moment ¢ such that y(f) € L and z(t) # y(t) for 0 < ¢ < {; or

(b) z(t) # y(t) at each t € [0, 4+00).

Let us take the sets

2,

T(w,yi0) = {tes e +at, =1+ %, w e ()}, (5.1)

Oy (w, x90) = {w*: Wy =W+ @(1 —e ™), we Q(O)} (5.2)
a

In the “lifeline” game, we call the set (5.2) the attainability domain of the evader.

Theorem5.2. If a > (3 and Qy (w, x90) N L # 0, then there is such control v,(-) € V that
is winning for the evader in the “lifeline” game.

Proof. According to the theorem, there exists at least one point w, € Qy(w, ) N L
satisfying the equality in (5.2). Then we fix the evader up with the constant control

v, = 5M. (5.3)
|w — Y10l

First off, let us demonstrate that by the control (5.3) the evader gets to the target point w, at
some time ¢, € T, (w, y10). Indeed, due to z59 = Y9, by means of (1.6) we obtain

*

y(t) = yro+ 2(1— ™) + (e +at, — 1). (5.4)
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Substituting (5.3) in (5.4) and allowing for the equality in (5.1) we achieve the desired result, i.e.,
220 —at,
y(t*)=y10+7(1—e )+ w— Y10 = wi.

Now, we need to show the validity of the condition (a) of Definition 5.2, that is, the evader
can escape by using (5.3) on the interval [0,¢,]. Assume conversely, or, more precisely, for the
pursuer there exists a control u,(-) € U by which the equality = (¢*) = y (t*) occurs at some
t* € [0, t,). Consequently, depending on (2.1), we get the vector

a

z(t7) = 210+ l/ t (un(s) —ve) (1 — e ")) ds. (5.5)
0

It is easy to see that z (t*) = 0 holds, thanks to z(t) = z(t) — y(t) (see (1.7)). As a result,
considering (1.3) we find the following estimations from the right side of (5.5):

I . 1 \ .
210 — 5/0 (1 —ealt ’S))U* ds| < 5/0 (1 — ealt ’S))\u*(s)| ds < %(ewt + at* — 1),
or
210 — %(e‘“ﬁ + at* — 1)) < %(e‘“ﬁ +at* — 1). (5.6)

Let us introduce the notation A = (e +at*—1) /a® in (5.6). Then square both sides of (5.6)
and because of |v,| = /3, we come to the quadratic inequality with A of the form

(042 — BQ) )\2 + 2<210,’U*>>\ — |210‘2 Z 0.

As A > 0, from the latter inequality we derive

az%ﬁg(\/<z107v*>2 + (a% = 2) 2102 = (210, v4)) S A = %(e““ +at* —1). (5.7)

Owing to t* < t, and taking the equality in (5.1) on board, it arises from (5.7) that

1

a2_52

|w — Y10

(\/<2107 U*>2 + (CYQ - 62) |2’10|2 — <2’10, U*>) < 6

(5.8)

In accordance with (5.3), we find by (5.8) that S|w — z10| < a|w — y10], 1. €., w & Q(z10, Y10)
(see (4.3)), and this conflicts with our supposition. The proof is complete. O

Remark 5.1. According to the definitions of Q. (210, Z20, Y10, f) and Qy (w, z20), we can conclude
that Qy (w, z20) C Qx (210, Z20, Y10, JA“) is reasonable in the “lifeline” game.

Theorem 5.3. Let o < 3. Then there is a control v,(-) € V, which is winning for the
evader in the “lifeline” game.

P ro o f. The proof follows directly from Theorem 3.1. U

§ 6. Examples

Below we will first address a problem for the game with the “lifeline”.
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Example 6.1. Let us analyze the game given by the following differential equations and
initial conditions:

X: T4+ T =u, x10 = (7,14), Too = (0,1), lu(t)| < 2, t>0, (6.1)
Y: y+y=wv, yio = (4,8), Y20 = (0, 1), ()] <1, t>0. (6.2)
In terms of (2.2) and Proposition 2.1, we get T ~ 7.71. On the basis of (4.5) and (4.6), we obtain
10, 410) = {w = (W1, w2) 1 (w1 —4)* + (w2 — 8)* < 20}. (6.3)

It is obvious that the set (6.3) is equivalent to
) = {wr = (who?): (0F=4)"+ (@2 -8)" =12 re[0,2v5]}. (6.4)

Relying on (6.4) we determine the set (5.1) as follows:
Ti(r) = {tr: e +t,=1+rr 6(0,2\/5]}.

In view of (5.2) and (6.4), we generate the system

1_ 1
wl = wl
Ww=wr+1l—et

for each 7 € (0,2v/5]. From this system we find the set

Qy(r,t,) = {w* = (w,,w?) 1wl =8+ /1% — (w} — 4P +1—etr r 6(0,2\/5]}
as the attainability domain of the evader in the game (6.1), (6.2) with the “lifeline”.

Now, we will consider constructing the attainability domain for the case with multiple pursuers
and one evader.

Example 6.2. Let the following game example be given:
Y y+ay =, y(0) = yo, y(0) =0, v <1,  t=0, (6.6

where a > 0, 5@ > 1, z0 7é Yo, t = 1, M.
Based on Lemma 4.3, we can write the relation

= 0
y(t) € n Qi(wi0,y0) + 5(1 —e™ ™),
i—1

where
Qi(Ti0, Yo) = Tio — ci(zi0) +7i(zi0) B, ci(zi0) = 51-2%0/ (512 - 1)7
7i(zi0) = dilziol/ (522 - 1), 2i0 = Ti0 — Yo-
For the game (6.5), (6.6) we can define the attainability domain of the pursuers in the form
T [ m

ﬂ Qi(xi07y0> + g(l — eat)] :

i=1

t=0

where

~ 2|,
T = min<t: e_‘”+at:1+m .
0; — 1
Acknowledgments. The authors are greatly indebted to Professor A.A. Azamov for dis-
cussing this paper and for several helpful comments.
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b.T. Camamos, Y. b. Couiubooes
Juddepennmnanbuas urpa ¢ «IHHAEH JKU3HI» 11 KOHTPOJIbHOro nmpumepa [lonTpsiruna

Kntoueswvie cnosa: nuddepeHnnanbaas urpa, npecieqoBaHie, YKIOHEHHe, YCKOpeHHe, cTpaTerus, rapaH-
TUPOBAaHHOE BpeMsl IOUMKH, O0JIACTh JOCTHIXKUMOCTH, JIMHUS KU3HU.

VIIK: 517.977
DOI: 10.35634/2226-3594-2023-61-06

OCHOBHOH TIENBIO TAHHOW PabOTHI SIBJISIETCS PEIICHUE OMHON M3 OCHOBHBIX 3amad Aif3ekca, a UMEHHO WT-
PBl C «JIMHHEH XU3HW» Ha KOHTPOJIbHOM mpumMepe [loHTpAruHa, Korma o0a UTpoKa MMEIOT OJMHAKOBYIO
JMHAMUKY JBWOKeHHS. J[JIs1 pelieHust 3ToW 3aj1aud Mpeclie/OBaTeNI0 MPeJiaracTesl CTpaTerus mapasielib-
Horo mpecnenoBanus (kparko II-ctparerust), obecriednBaroias ckopeiiiee cONMMKEHHE UTPOKOB U TTOHM-
Ky yOeraromero B mpezaenax HEKOTOporo 3aMKHyToro mapa. Kpome Toro, aist paccmarpuBaeMoid audde-
PCHIMATILHON WUTPBI MPUBOJMTCS SIBHAS aHAUTHYECKas GopMmyla JUis 00JacTH JOCTHKHUMOCTH MIPOKOB U
o6obmuraercst ocHoBHas nemMa (Jiemma JI. A. IleTpocsiHa 0 MOHOTOHHOCTH OTHOCHTEJIBHO BIIOXKEHHUS 00Ma-
CTH JIOCTIXKUMOCTH JUTSL HTPBI MIPOCTOTO MpeciienoBanus). Mcnonb3ys 5Ty OCHOBHYIO JIEMMY, MBI HaXOJHM
YCJIOBHSI Pa3pelInMOCTH UIPHI C «JIMHHEH JKU3HU» M JUIS KOHTPOJbHOro mpumepa Ilontpsruna. dns nHa-
DIISJTHOCTU B KOHIIE Pa0OThI IPUBE/ICHBI IPUMEPHI JUTSI HEKOTOPBIX YaCTHBIX CIYYacB.
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