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Introduction

By the end of the last century, four research directions had been formed in the theory of po-
sitional differential games (PDG): non-cooperative, cooperative, hierarchical and coalitional vari-
ants of games. Among coalitional games, there are games with transferable payoffs (games with
side payments in which players can share their profits during the game) and with non-transferable
payoffs (games without side payments when no splitting of payoffs is allowed). The coalitional
games with side payments are being actively explored at the Faculties of Applied Mathematics
and Management Processes of St. Petersburg State University and the Institute of Mathemat-
ics and Information Technologies of Petrozavodsk State University (Professors L. A. Petrosyan,
V. V. Mazalov, E. M. Parilina, A.N. Rettieva and their numerous domestic and foreign follow-
ers) [1-6]. The theory of coalitional PDG without side payments is just beginning its formation
on the basis of the objections and counter-objections equilibrium; this theory is being investi-
gated at the Department of Optimal Control of the Faculty of Computational Mathematics and
Cybernetics of Moscow State University [7-10]. In this paper we will use this approach to
investigate a coalitional six-persons PDG without side payments and with a two-coalition struc-
ture {K; = {1,2,3}, Ky = {4,5,6}}.

Moreover, we propose a similar approach to the construction of optimal (in the formalized
sense below!) solutions in coalitional DPGs based on the ideas of the Nash equilibrium principle
and the Bellman dynamical programming method.

Recall that in 1949, a twenty-one-year-old graduate student at Princeton University John
Forbes Nash proposed in his dissertation the concept of solving a non-cooperative game, later
called Nash equilibrium (NE) which is a crucial concept in non-cooperative games and their ap-
plications in various sciences (mathematical economics, sociology, systems analysis, and military
sciences). For his work, Nash was one of the recipients (together with Harshanyi and Selten)
of the Nobel Memorial Prize in Economic Sciences in 1994. Opening almost any modern jour-
nal on game theory, operations research, systems analysis and mathematical economics now, we
will almost certainly meet with papers that touch on certain issues related to Nash equilibrium.
However, “there are spots on the sun”. These “spots” may be the following ones: internal and
external instability of a set of Nash equilibrium situations; instability with respect to two or more
players deviations from the equilibrium (NE is stable with respect to the deviation of only one of
the players); NE may not exist; improvability; absence of equivalence and interchangeability; etc.

18



In these cases, the authors see [9] two ways out. First, limit yourself to mathematical models that
are free of some of the listed negative properties. Second, introduce new concepts of equilibrium
other than NE. Here, in our opinion, the equilibrium of objections and counter-objections [7, §]
and the Berge equilibrium [9, 10] are promising. In addition, in this paper we use Nash ideas to
formalize a Pareto solution for coalitional PDGs.

We consider a non-cooperative game in normal form described by the triple:

['= (N, {Xi}ens {fi(2) }bien)-

Here N = {1,..., N} is the set of players’ numbers, the set of strategies x; of the player ¢
is X; C R™. The players choose their strategies x; € X; (i € N) simultaneously. As a result,

we get a strategy profile v = (x1,...,z2n) € X = HXZ" The aims (interests) of the players

1€N
are determined by the values (payoffs) of payoff functions f;(z) (i € N). For every player i,
his objective point in the game I' is to choose his strategy so that his payoff will be as large as
possible.

Definition 0.1. A pair (z¢ f¢ = f(2°)) € X x RY is called a Nash equilibrium of the
game [' if N equations

max f;(az;) = fi(x) (i €N) (1)

7 K3

take place. Here we use the generally accepted in game theory designations
(z°||x;) = (:Ef, T T, T, ,xf\,) )

Equations (1) imply immediately three important conditions of Nash equilibrium (NE). First,
NE is stable under a deviation of a separate player from it. Second, NE satisfies the property of
individual rationality, i.e.,

(7€) > i (e . ;
fi(z®) > max min filzi,xz—;) (i €N)
(here —i = N\ {¢s} = {1,...,e—1,i+1,...,N}). Third, in the case of a zero-sum game
(i.e., when in T" the set of player’s numbers is N = {1,2} and fi(z) = —fo(zx) = f(x)),
x¢ coincides with the saddle point (x¢,z5) € X; x X, determined by the chain of equalities

max f(zy,25) = f(xf,25) = min f(zf, x2). Moreover, Definition 0.1 immediately answers two
z1€X1 r2€ X2

questions: 1) how should player ¢ € N act in the game? (the answer: to use z§ € X;); 2) what
kind of payoff will he get? (the answer: f;(x°)).
Let also the game [" be placed into the correspondence to the N-criterion problem

Ly = (X, {fi(®)},en)-

Here the set X of alternatives = coincides with the set of strategy profiles of the game I', the
criterion f;(z) coincides with the scalar payoff function f;(x) of the player ¢ € N.

Definition 0.2 (see [11-13]). An alternative z¥’ € X is called a Pareto maximal alter-
native in the problem T',, if for any x € X the system of N inequalities f;(x) > fi(z), i € N,
is incompatible, besides at least one inequality is strict. The pair (zF, f¥ = f(2)) € X x RY
is called a Pareto maximum of the problem I',; recall that f = (f1,..., fn) € RY.

It follows immediately from Definition 0.2 that when using an alternative other than %
1) it is impossible to increase all criteria f;(x”) (i € N) at the same time; 2) if at least one of the
components f;(z’) of the vector f(x¥) increases, then at least one of the others will inevitably
decrease. Moreover, Karlin ’s Lemma [14] is obvious:
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Property 0.1. If there exist constants a; > 0 (i € N) such that

max > oufi(r) = 3 oufix”), @

1€N €N

P

then x" is a Pareto maximal alternative for the problem T',,.

We designate the operation of Pareto maximum construction (2) as

MAXGex f(x) = f(a") = f7,

1.e.,
MAXx f(2) = maxa’f(z) = o/ f(a") (3)
TE
for some constant N-vector « = («,...,ay), o; > 0 (i € N); the prime means transposition

(o is row N-vector).

§ 1. Basic concepts of coalitional game theory

Here we move on to the possible version of coalitional game I'. Let a coalition structure
be given on the set N. A coalition structure is a partition of the set N into pairwise disjoint
subsets (coalitions) of N, the union of which equals N. We have restricted ourselves to the two
coalitions K7 = {1,2,3} and Ky = {4,5,6} for the game ', N = K; U K5 and K; N Ky, = @.
Players within their coalition K; (I = 1,2) have the possibility to jointly choose their strategy

K =1zt € Ki} € Xg, = HXZ" The set of all such strategies x g, is designated as Xk,.
i€k,
Then every strategy profile z € X of the game I" can be written as © = (zg,, k, ). Payoff vector-
function of coalition K is designated as fx,(zk,,%k,) = (fm(Tk,, 2K,) |m € K) (I = 1,2),
so the payoff N-vector function (a vector criterion of the problem I',) is f(z) = f(zk,,2x,) =
= (fK1 (xKl ) sz)v sz ('TK17 sz))

As a result, we move from the original non-coalition version of the game I to the coalitional

game
G = (N={K UK}, {Ki}im12, { Xk him12 {fk(@K0 00) him12) -

The players of a separate coalition cooperatively choose a coalition strategy, fulfilling two
requirements: individual and collective rationality.

The individual rationality condition means that the strategy profile 2 provides for the ith
player a payoff which is not less than his maximin payoff, namely

fil@”) > max min fi(r,r) = min fi(2f,0) = f7 < fi(2f,2) Vo, € X4, i €N,

r,€X; x_;€X_; r_,€X_;

where —i :N\{Z} = {1,,Z— 17Z+ 1,...,N}, T_; = (.CU17...,.CUZ',l,LUZ‘Jrl,...,SUN) € X,i =
JEN\{i}
Note that, for the class of linear-quadratic games considered in this paper, such maximins do
not exist [8] and therefore we do not take into account the conditions of individual rationality.
Turn to the collective rationality condition. For the members of a separate coalition, for exam-
ple K1, it comes down to the Pareto maximality (in relation to the partners from this coalition /),
namely

MAXf}(lGXKl le ('TK17 x§2) = le <x§17x§2)'

Thus, we come to the following definition.
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Definition 1.1. A strategy profile 2¥’ = (zf ,z%,) € X = Xk, X Xk, is called coali-

tional Pareto-optimal (CPO) for the game G if

MAXleeXKl fK1($K1>$§2) = fK1($§1,$§2), (4)
MAX:IL‘DK2€XK2 fKQ <x§17xK2) = fKQ (xfp;l’xﬁg)'

It is easy to see that (4) is a modification of (1) for the case of singleton coalitions in I' (the op-

eration max from (1) is replaced to the operation of Pareto maximum construction 1\/IAXleE Xx,
T;E€EX

from (3) and (4) is a modification of NE). Naturally, the “sun spots” mentioned above, character-
istic of NE, also take place for CPO.

In our opinion, Definition 1.1 is no less promising for research than Definition 0.1. However,
next we will focus on the issues of internal and external stability of coalitions in PDG.

§ 2. Internal and external stability of coalition

Let (zf ,xf. ) = af be a coalitional Pareto-optimal (CPO) strategy profile (determined
by (4)) and the players have decided to stick to this strategy in the coalitional game . The
reasons for this choice, for example, for the coalition K are:

first, xf}l is a Pareto maximal alternative of the problem G; = <X K1 i (Tky, x§2)> (players
from K strive to choose their strategies so that for everyone his payoff function value will be
as large as possible and in the multicriteria problem G, the strategy :cf}l provides the Pareto
maximum for fx, (zx,, 2%, ));

second, the requirement of internal stability of K;. We call K an internally stable coalition
if none of its players has a desire to leave K;: either go to the coalition K5, or form a new
third coalition consisting of only one “defector”. Let’s assume that in /K at least one of the
remaining players has the opportunity to “punish the defector”. Formally, we define the process
of punishment as follows.

Let player 1 have an objection to the internal stability of K1, i.¢., he has a strategy =1 € X,
such that

fl(x{vxgvx?{:vxl;g) > f1($§1a$§2)- (5)
In respond to this objection, one of the remaining in K players, for instance, player 2 has a
counter-objection if he has a strategy 25 € X, for which two inequalities

fl(l’{,l’g,l’g,l’iQ) < fl(xilvxig)v (6)
f2(x?7xgvx§7x§2> > fg(I?,$2,SL’§,$§2) Vg € Xo. (7

are satisfied.

The first of them “nullifies” the effect of the objection because (6) reduces the payoff of the
“threatening” player 1 to less than it was fi(z”) = fi(z%,, zk,). The second inequality (7) even
“pushes” player 2 to use z§ because as a result, player 2 will achieve the biggest payoff he can
only dream of. Similarly, the counter-objection of player 3 in response to the objection of player 1
to the internal stability of /; is determined, as well as the reaction of the two remaining players
to the desire of the one player from the coalition K to leave this coalition.

Definition2.1. The coalition K is called internally stable if, in response to the possibility
of any player of the coalition K to leave K, at least one of the remaining players has a counter-
objection (of the form (6) and (7)).

Note that the absence of objections leads, of course, to the uselessness of counter-objections.
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Let’s move on to the external stability of the coalition (for example, K; in the game G).
Assume that the unwillingness of any player from K, to leave the coalition K, and join K,
characterizes the external stability of K;. It is also obvious that the internal stability of K,
“provides” external stability of K3 and vice versa.

Thus, the internal stability of each coalition in the coalition structure guarantees internal and
external stability, which leads to the stability of the coalition structure, i.e., to the unwillingness
to break the existing division of players into pairwise disjoint subsets.

Finally, we note that we achieve the fulfillment of inequalities (6) and (7) for the game PDG
discussed later in Section 3 by special coefficient restrictions on the payoff functions of the
players from K.

The further material of the paper is devoted to the construction of an explicit form of CPO
(determined by 1.1) for a quite general class of PDG.

§ 3. Differential linear-quadratic six-player game

We consider a differential linear-quadratic six-player game described by
I'p = (N, {K1 ={1,2,3}, Ky ={4,5,6}}, Z,, {&:}ien, {Ji(U, to, wo) }ien) 3

Here N = {1, 2, 3,4, 5,6} is the set of players; a coalition structure (the division of N into pairwise
disjoint subsets: N = K; U Ky A K1 N Ky = @) is given; a controlled dynamic system 3, is
linear (in = and w; (i € N)):

x+ZuZ, to = T,

the game is finished at the moment ¥ > 0 and ¥ is fixed; the game functioning interval t € [ty, V],
0 < tgp <t < U; elements of matrix A(t) of dimensions n X n are assumed to be continuous
on [0, 9] (this fact will be indicated by A(-) € C,x,[0,7]); x € R" is an n-dimensional state
vector; a pair (t,x) € [tp,] x R™ is a position of the game; the initial position is (g, zo);
a strategy of player i is u; € R" (i € N); since u = (uy,...,us) € R then the coalition
strategies are uy, = (u1,us,u3) and ug, = (ug,us,ug), hence u = (ug,,ug,); the set of
strategies of player ¢ € N is (according to [15])

ﬂz‘ = {U;s +ui(t, ) = Qi(t)x | YQi(-) € Cpxnl0, 9]},

the strategy profile is U = (Uy,...,Us) € 4 = Hﬂ“ Uy, = HL[ . A play of the
€N ]EKl

game (8) is organized as follows. Each player chooses and uses his strategy U; +u;(t,z) = Q;(t)x

(i.e., uses his specific matrix Q;(-) € Cy,x,[0,9]). Then the solution (), ¢t € [0, V], is constructed

for the system of homogeneous and linear differential equations with continuous (in t) coefficients

+ZQZ ] z, x(ty) = To.

1€N

By means of this solution the realizations of the strategies w;[t] = u;(t, x(t)) = Q;(t)x(t) (i € N)
chosen by the players are formed. Note, that n-vectors u;[t] are continuous on [tg,¥]. On such a
continuous pairs (x(t), u[t] = (u1[t], ..., us[t])) the payoff function of player i is a priori defined
as a quadratic functional

J; (U, to, 20) = 2/ (9)C; / <Zu |Dyju;t )dt (i € N), 9)

JEN
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the prime means transposition, the matrices C; and Eij of dimensions n x n are assumed to be
symmetric without loss of generality. Note, in (9) the first term is called a terminal term and
the second one is called an integral term. The value of (9) is called the payoff of player 7 in the
game ['p. In terms of “meaning”, the players within each coalition cooperatively choose their
strategies so that the components of their three-coordinate payoffs Jx, = (J.|r € K;) (I = 1,2)
will be as large as possible (and satisfy the condition of individual rationality). When choosing the
optimal solution, we will use the coalitional Pareto-maximal strategy profile (see Definition 1.1).

Firstly, we simplify the controlled system of I'p using the substitution y = X ~!(¢)x where
the matrix X (¢) of dimensions n x n represents the fundamental system of solutions for the
equation & = A(t)x, X (V) = E, (E, is the identity matrix of dimensions n x n). As a result, the
system X, turns into X,

%:%WZMFX%WW

the set $; of strategies of player i turns into

W =A{Ui +ui(t,y) = Qi(t)y | VQi(+) € Crxnl0, 9]},
the payoft function J; (U, to, ) of the ith player turns into

3 (Uto.0) = Y O)C0) + |

to

(Zu;[t]Dijuj[tO dt (i eN), (10)

jEN
where the constant matrices C;, D;; of dimensions n X n are symmetric.
As a result, game (8) is reduced to the form

Fqg= (N, {Kq, Ko}, 3y, {&ibien, {Ji(U, to, vo) bien) - (11)

Let’s give a possible economic interpretation for (11). Suppose there is an industrial cluster
consisting of six companies that are, in addition, in two associations. As a rule, the company’s
goal is to simultaneously reduce costs (C; < 0) and increase internal investment (D;; > 0) in its
own production. An additional condition is the opposite interests of the other cluster members

(if Dy <0 (2 # 9)).
In view of this interpretation, we assume that

Ci < 0, D;; > 0, Dij <0 (Z,j € N; Z#]) (12)

Now we should apply Definition 1.1 to the differential game (11). Namely, for each coali-

tion K; and K, we introduce a set of its strategies Uy, € U, = HLL, (I = 1,2). Besides we
reK;

use a three-dimensional functional of its payoffs, which, in view of U = (Ug,, Uk,), is of the

form Jx, = (J;]j € K;) (I =1,2). Then

3K1(U7 th yO) = (31(UK17 UK27 tOv 3/0)7 32(UK17 UK27 tOv 3/0)7 33(UK17 UK27 tOv 3/0))
and
3K2(U7 th yO) = (‘34(UK17 UK27 th yO)a ‘35(UK17 UK27 th yO)a ‘36(UK17 UK27 tO) ?/0))

Definition3.l. Apair (UF;37) = (UL, UL ;3% (UF to,90), 3%, (UF 1o, y0)) € UXRS
is called a coalitional Pareto-optimal solution (CPOS) of the game I'; if for all initial positions
(t()a yO) S [t()v 19] X Rn, Yo 7& Ona

MAX5K1 S19°% 3K1 (UK17 UI€27 t07 yO) = 3§1 (UP7 t07 yO)u
MAX5K2€5J.K2‘3K2 (U[I;, UK27 tO? yO) = 322(UP7 tO) yO)a
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where, for example, MAXEK1 Etlre, Ik, (Uk,, U };2, to, Yo) means a Pareto maximality of the three-
dimensional functional Jx, (Ux,, UL, to, yo) on the set Ll .

In this paper the Pareto maximum will be realized by following Property 0.1 (by finding the
scalar maximum for the linear convolution of the three components Jx, (Ux,, Uf,, o, yo) with
positive coefficients).

§ 4. Auxiliary assertions from the theory of matrices and quadratic forms

Further, for a constant and symmetric matrix D of dimensions n X n, the inequality D > 0
(< 0) means that the quadratic form 2’ Dx is positive definite (negative definite), where = € R".

Proposition4.l (see [16, p. 108]). The two chains of implications:
a)D >0=0< X2 <2'Dx < Ax'x Vx € R,
b) D < 0= —Ax'z <2'’Dx < —\a'z Vax € R";
take place. Here \(—A) is the smallest root and A(—M\) is the largest root of the characteristic
equation det [D — AE,| = 0, 0 < A < A, E,, is the identity matrix of dimensions n X n.

Propositiond4.2. Let A be the largest root of the characteristic equation det [D—\E, | =
=0and D > 0. Then
a) A < nM, where M is a maximum of modules of elements d;; of matrix D = (d;;) [16];

b) A < i:InLi_gnZ \di;| [17].
j=1
Proposition 4.3. The equivalence D < 0 < (—1)D = —D > 0 is valid (here we
multiply all the elements of constant symmetric n X n-matrix D by minus one) and then the

largest root —N > 0 of the characteristic equation det |[—D — \E,| = 0 coincides with the
smallest root of the characteristic equation det [D — \E,,| = 0.

Remark 4.1. According to Proposition 4.3 to estimate the smallest root of the characteristic det [D —
AE,| = 0 it is sufficient to estimate the largest root of the characteristic equation det [—D — AE,,] = 0.

Proposition 4.4 (the analogue of Lemmas 4.1 and 4.2 from [9]). The following implica-
tions are valid (1,j € N, i # j):
(@) D;; > 0= forevery U*, € l_;, and U} € 4; there exists its own constant
Oé:((U*, U*ia th yO) >0

such that for all constants o > o (U, U*,) and for the strategy U,y the strict inequality
Ji(U3, Uz, to, yo) > (U7, U, to, o)
is valid. Recall that the payoff function J; is determined in (10) and
—eN\{i} ={1,...;i—1,i+1,...,N};
(b) Dy <0 (i # j) = for all U € U; and U*; € 4 there exists its own constant
oG (U7, U”,to,90) > 0
such that for Vo > o (U5, U* ;) and U; =+ ay we get
3 (U;, U o, y0) < 35U, U2 o, yo)-
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And lastly, the following propositions are established in [7, 8].

Theorem4.1. If (12) is satisfied for the game 1y, then:

a) a Nash equilibrium does not exist;

b) gligﬁi(Ui,U—i,toayo) does not exist, and that is precisely why, when determining the
S

optimal solution of the game 1y, the condition of individual rationality can be ignored;

¢) if, in addition to (12), restrictions on the roots of the corresponding characteristic equations
A11Age < A19Aoy are satisfied, then in the game (11) there exists [7] a Pareto equilibrium of
objections and counter-objections.

In conclusion, we turn to the central result of this paper: the construction of an explicit form
of a CPO-solution for coalitional game (11). To do this we will use Property 0.1 and Bellman’s
dynamical programming method. It will also be necessary to solve one static N-criterion problem,
with which the next section begins.

§ 5. Pareto maximal strategy profiles and Pareto payoffs

Let us set out some auxiliary assertions (see Lemma 5.1 below).
Consider a static six-criterion problem

FGI {RGn {fZ( )—ul aur + . +u6 16U6}z 1yeesy 6}

in the problem TI'y the decision maker’s aim is to choose an alternative u = (uy,...,us) € R®"
so that the values of all 6 components of the vector criterion f(u) = (fi(u), ..., fe(u)) will be
as large as possible. Here the analogue of Definition 0.2 is the following: an alternative u® is
Pareto maximal for the game T if for all u € R’ the system of inequalities f;(u) > fi(u”)
(1=1,...,6), where at least one inequality is strict, is incompatible.

Below we use the analogue of Property 0.1.

LemmaS5.1. Let in I' the constant matrices D;; of dimensions n X n be symmetric, and the
positive numbers N;;, Ni; (i,7 =1,...,6, 15 j) satisfy the inequalities

Di; >0, Dij; <0 (2 #7), Auilae < AipAor,  Aualss < AysAsa.

Then for constants o (i € N) such that

=1 ot LA An o= LAt ashs
! ’ 22\ Ay A )’ 52 As3 ’

Oé*zl O[*:1 %‘F% O[*:1 7A46+OZEA45
4 ’ 2\ Asy Ass )’ 62 Ags ’

the quadratic forms

f(u) = aifi(u) + azfa(u) + g fs(u) + ai fa(u) + a5 f5(u) + agfe(u) =
=uyD1(a®)uy + ... + ugDg(a™)ug

(13)

are negative definite. Here
Di(a*) = a1 Dy; + a3 Dy + a5D3; + oy Dy + o Ds; + o5 D,

besides, \;; > 0 is the largest root of the characteristic equation A;;(A) = det[ — AE,| =
and —N;; < 0 is the largest by absolute value root of the equation 0;;(\) = det[D;; — AE,] =

(1,7 €{1,...,6}, 7 #1).
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Proof. Due to the matrices D;; > 0, D;; < 0 (i, € N; i # j) of dimensions n X n
are symmetric, the roots of the characteristic equations A;;(A) = 0 and 6;;(A) = 0 are real and
Ai; >0, —A;; <0 (i,j € N, i # j). Since w;Dju; < Ajuju; and u;Dijuy < —Agjuluy (see
Proposition 4.1) then we write

f(u) = aifilu) + azfolu) + ... + agfo(u) =
= Ull [O[{DH + Oz;Dgl + ...+ agDm]ul + ...+ U%[OZTDH; + a;DQG + ...+ (IEDG@]UG <

< [&TA11+(I;(—A21)+. . +Oég(—A61)]U/1U1+ . +[OZT(—A16)+OZS(—A26)+ . +O[€(+A66)]UIGU6

The components o of the vector-column o* = (o, o, af, ajai, of) are given in (13). Since
wiDiiu; < Aguju; and w)Djju; < —Agjllugl]? the scalar function f(u) < 0 for all u € R,
u # Og,, if all the inequalities from Table 1 are satisfied.

Table 1

AHOZT — Agloé; — A31a§ — A410(Z — A510z§ — AﬁlOzg <0
—AlgOff + AQQQ; — A3204§ — A420(Z — A520z§ — AﬁgOzg <0
—AlgOff — AQgOé; + A33OJ§ — A43Oéz — A530é§ — A630é§ <0
—A140f1k — A24OZ§ — A34O{§ -+ A44Ozz — A540z§ — A64Oég <0
—A15Oé>{ — A250é§ — A35OZ§ — A45OZZ + A55Oé§ — A65Oé§ <0
—AlﬁOff — AQGOé; — A36OJ§ — A46OJZ — A560ég + A66ag <0

Moreover, we get for

AHOf{ — Agla; — A310&§ < 0,
—A12Oé;i< —+ A22O‘§ — A320[§ < 0, (14)
—AlgOff — AQgOz; + A330&§ < 0,

and

A44Ozz — A54Oé§ — A640é§ <0,
—Ays0) + Assay — Agsag < 0, (15)
—A460zz — A560z§ + Aﬁﬁag < 0,

that all 6 strict inequalities from Table 1 take place, because with the exception of (14) and (15),
all the other terms are negative (since —A;; < 0, o > 0, ¢ # j).
We establish that A11Ags < AjoAgy and AgyAss < AysAsy yield the fulfilment of the first two

inequalities from Table 1. Really, if a5 > 0 and 0 < o a5 < —
A2 A22

1
from Aj1Asy < AjaAs) then the first two strict inequalities (14) take place. Finally, the third in-

(that follows immediately

. . ) 1A Aosass 1 /A A .
equality from (14) is valid for 0 < o < —M, where o5 = — <$ + ﬁ) Similarly,
A33 2 A21 A22
1 [(Ay A45> 1 <A46+05§A45) .
ar=1Laoaf==-—4+-—], af = = | ——————— | imply the fulfilment of (15). O
4 5 2 <A54 A55 6 2 A66 ply ( )

Proposition5.1. If, in the differential game 1y,

Dy >0, Dy <0, C;<0(i,5=1,...,6; 1 # 7), Aoy < AppAor, Agglss < AysAsy, (16)
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then, for the 6-criterion problem a Pareto maximum strategy profile U, we have

U?P = (Ulp,UQP,...,UéD) = (uf(t,y),u?(t,y),...,ug(t,y)) =
=u"(t,y) = (QT 1)y, Qs W)y, ..., Q5 (t)y) = (17)
= (=D ()0 (t)y, =Dy (a")0" (t)y, ..., —Dg ' (a*)0" (t)y),

where OF (+) is a symmetric and continuous on [0, 9] matrix of dimensions n X n

9
o (t) = {0_1(04*) + / [Dr'(a") + Dy (@) + ... + Dg'(a”)] dT} (18)
t
and constant symmetric n X n-matrices
DZ(Oé ) —OélDll—FOéQDQZ -+a§D6i (Z = 17...,6)7 (19)
where positive numbers o, o5, . .., af are determined in Lemma 5.1.

Proof We will find the Pareto maximum strategy profile U” by applying Lemma 5.1. We
will specifically use Table 1 and the dynamical programming method (DPM) (see [12, p. 112]).
The application of DPM here includes two stages as follows. In the first stage, we will find
six positive numbers of, a3, ..., af and a continuously differentiable scalar function V' (t,y) =
= y'O(t)y, O(t) = ©'(t) Vt € [0,9] and n-dimensional vector functions u;(t,y, V') (i € N) such
that for all y € R”

V(,y)=y'Ca)y, C(a*)=aiC;+ asCy+ ...+ aiCs.

Using the scalar function

oV JovY
Wi(t,y,u,...,ug V) = [

o a—y} (w4 ...+ ug) + afu} Dy (a*us + ... + agug Do(a”us,

ov
in view of { — = grad,V | and
dy v

max W(t,y,u1,...,us V) =Idem{u; — u;(t,y,V) (i=1,...,6)} (20)

-----

for all (t,y,V) € [0,9] x R"™!, we will determine n-dimensional vector functions w;(t,y, V)
(¢ € N). The fulfilment of

oW :8_V+zp( Vug(t,y, V) =0, (i=1,....6),
t,y,V) 8y
(21)

oW .
S =2Dia”) <0 (i=1,....6),

2

(due to Lemma 5.1, D;(a*) < 0) for all (¢,y) € [0,9) x R", is a sufficient condition for existence
of u(t,y,V) in (20).
From (21), we get
sV

wi(t,y, V) =—=D;

5D (a)ay (1=1,...,6). (22)
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Then
_8V 1 {81/] (D‘l

Wity ult,y, V), V) = Wity V1= 50 = 7 |50

Second stage. We will solve a partial differential equation
Wi(t,y,V)=0
under the boundary-value condition (C'(a*) = afC + a3Cy + ... + a{Cs)
V(,y) =y C(a*)y Yy eR"

The solution V' = V' (¢, 1) is constructed in the class of the quadratic forms V' (¢,y) = v'OF (t)y
with a matrix ©F (t) = [©F(t)]" of dimensions n x n. Then, for all ¢ € [0,] and for all y € R,

we get
W[ty V(t,y) =y©"y| =0, V(¥,y)=yCla*)y VyeR"

Both of these requirements will hold if the symmetric matrix ©%(¢) of dimensions n x n is a solu-
tion of the matrix differential equation of Riccati type (0, «,, is a null matrix of dimensions n x n):

OF(t) — 67 (t) (D' (a*) + ...+ Dg'(a") OF(t) = 0pxn,

0Ff (W) = C(a*) = afCy + a3Cy + ... + aCs.

The solution ©F(¢) of this matrix equation is of the form (18) [12, p. 65]. Here we take into
account the implication

Ci<0(i=1,...,6) = C(a") =a]C1 + a5Co+ ... + a;Cs < 0.

Finally, the validity of (17) follows from (22). Thus the Pareto maximum strategy profile U* is
of the form (17)—(19). 0
Now, we will construct the Pareto maximum payoffs

JP = (lea R JGP) = (Jl(UP7t07 y0)7 ) JG(UP7t07 yO))
using the dynamical programming method [12].

Proposition 5.2. Let requirements (16) from Proposition 5.1 be fulfilled, and, in the
game Uy, let six scalar continuous differentiable functions Vi(t,y) = y'0;(t)y (i = 1,...,6) be
found such that

D) Vi(d,y) =y'Ciy Vy € R™;

2) the system of six partial differential equations

68? {%m N(t)y +y' 0" (t)Mi()0" (t)y = 0,

Vid,y)=vy'Ciy VyeR" (i=1,...,6)

(23)

has a solution which is of the form Vi(t,y) = y'0;(t)y, [0;(t)] = 6,(t) (i=1,...,6).
Then, for any initial position (to,yo) € [0,9) x R", yo # 0, we have
JPZJ@(UpvtmyO) :y(,)@z(t())yo (Z: 1776)

(2

In (23), the continuous matrices of dimensions n X n
N(t) = — (Dfl(a*) +...+ Dgl(oz*)) er (1),
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M;(t) = ©°(t) [Dy(a*)Du Dy () + ...+ Dg () DigDg ' (a*)] ©F(t)  (i=1,...,6),

matrices ©F (t) and D;(a*) of dimensions n x n are given in (18) and (19), symmetric n X n
matrices

O,(t) = [Yﬁl(t)}/ {Ci — /t Y'(1)er (1) M,(1)e" ()Y (1) dT} Y7Ht) (i=1,...,6), (24)

Y (t) is a fundamental matrix of solutions for the homogeneous system § = N(t)y, y(¥) = E,.

Proof We construct the scalar functions

ovi Tovi] :
Wit y, V; LI N(t Pt Dyuf(t,
V] =50+ |52 N0+ [uf )] Dl (1) ..+ o)
+ [ug(t,y)]/Dwug(t,y) (Z:1776)7
where n-dimensional vector functions u?’(¢,y) are determined in (17).
Next, we solve the system of six partlal differential equations
Wilt,y,Vi] =0, Vi(d,y)=y'Ciy VyeR" (i=1,...,6). (26)

The solution V;(t,y) (i = 1,...,6) of (26) is constructed in the class of the quadratic forms
Vilt,y) = y'Oi(t)y, [0:()] = ©i(t) (i = 1,...,6).

We will set up two facts.

First, the solution of system (25) and (26) satisfies the equality

V;(thyO) - Ji(Upat()ayO) (l = 17---76)7 (27)

where the strategy profile UP = (U7, ..., UL) is of the form (17). Actually, if UT is a strategy
profile from (16)—(19), then, in view of (25) and (26), for the solution y' () of system ¢ = N (t)y,

y(to) = yo # 0y, and also y = y” (), we get

OVi(t,y*(t)) N oVi(t,y"
ot oy

0 = Wilt, (1), Vilt, " (1))] = “”} Ny +

+Z P, y" ()] Digul (1,47 (1) = Wilt] Wt € [to, 9] (i =1,...,6).

Integrating both sides of this equality from ¢, to ¥ and using the boundary-value condition
from (26) we obtain

0—/ Wilt] dt — / de dt+/t P Dyl (1" (1)) dt =
— Vi(0.y(0)) ~ Vilto. " (1) / P(0)] Dy (1,47 (1) dt =
=y'(v)C /to Zl )] Dijuf (8,4 (1)) dt — Vilto, y" (to)) =

= J;(U" to,y0) — Vilto, y" (t0)) (i=1,...,6),

this result finally proves (27).
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Second, we will establish that the solution V;(t,y) (i € N) of system (26) has the form
Vi(t,y) = v'©;(t)y, where the symmetric matrix O;(¢) of dimensions n X n can be represented
as (24). Actually, substituting V;(¢, y) = v'©;(t)y into (26), we see that (24) will be valid if ©;(t)
(¢ =1,...,6) is a solution of the linear inhomogeneous matrix differential equation

0, + O;N + NO, + 0P (t)M;0F (t) = 0,0n, ©;(0) =C; (i=1,...,6). (28)
Substituting ©;(¢) from (24) into (28), we will make sure that the symmetric matrix O;(¢) of
dimensions n X n is really the solution of (28). This completes the proof of Proposition 5.2. [

Remark 5.1. Combining Propositions 5.1 and 5.2 leads to the following end result concerning the
explicit form of the Pareto maximum solution (U?, J¥') € 8 x RS for the game I'y.

Let in the game I'y;:

1) constant symmetric matrices of dimensions n x n satisfy

D;; >0, Dij <0, C; <0 (4,5 =1,...,6; i # j);

2) A11Aoo < Aj2Ao1, Aualss < AysAsy.
Then for all (o, y0) € [0,9) x R", yo # Op, we have

UP = uP(t.y) = (~ Dy (a")OP (Oy, Dy (0")OF (D ...~ Dy (a")OP (D))
JP = (le’ JQP’ ) JéD)’ sz = yé]@i(tO)yO (Z =1,... 56)5

and the symmetric matrices ©F (¢) and ©;(¢) of dimensions n x n are of the form:

7
of(t) = {C‘l(a*) +/t [Dfl(a*) + Dy o) ...+ Dgl(oz*)] dT} ,

, 9
0,(t) = [Y1(1)] {CZ- - /t Y'(7)0F (r)M; ()0 (r)Y (1) dT} Y=it) (i=1,...,6),

n X n-matrix Y'(¢) is a fundamental matrix of solutions for the homogeneous system § = N(t)y,
Y (¥) = E,, the symmetric matrices

C(Oé*) = o/{Cl + 04502 + ...+ O%CG, DZ(OZ*) = OZTDM' + CY;DQZ' + ...+ O%Dﬁia
N(t)=— (Dy'(e*) + ...+ Dg'(a¥)) ©F (1),

M;(t) = 7 (1) [Dy (@)D Dy (@) + ... + D (") DisDg (a™)] ©7 (1),

the positive numbers o, a3, ..., ag are defined by a recurrent way
=1, ag= (B de), gL (Autoit)
P70 22\ Ay A7 P2 As3 ’

1 /A A
a;=1, of = (44—1— 45), ag

(A A 1<M)
2 \Asa Ass ’

2 A66

where Aj; (—A;j;) is the largest (the smallest) root of the characteristic equation det [D;; — AE,] = 0
(respectively det [D;; — AE,] =0) (i,j € {1,...,6}, i # j).
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§ 6. Explicit form of CPOS

Let’s move on to the main result of the present paper. We construct the explicit form of
coalitional Pareto optimal solution (CPOS) for the game I';. According to Definition 1.1, for the
game [';, under restrictions (16) the following equalities are valid:

MAX5K1€5J.K13K1 (UKU Ullggv to, yO) = 3Kl (UP’ to, y0)7
MAX5K2€MK23K2 (UII_(jp UK27 tO? yO) = 31(2(UP> tO) yO)a
which will follow from

max  [a;d31(Uk,, Uk,, to, yo) + a332(Uk,, Uk, to, yo) + 333(Uk,, Ug,» to, o) =

UK1 EﬂKl

3j<UP7 t07 3/0)7

I
(]
L

1

<.
Il

2
max [a234(U§1,UK2,tO,yO) +a§35(U§1,UK2,tO,yo) + 04236((][2, UKQ,thyo)} — (29)
Uy Edlic,
6
= In(U" 0, 90),
\ S—
for all (to,y0) € [0,9) x R™ where the constants
« . LA Ap . L (N34 azha
ath aQ‘z(AQﬁAm)’ “7\T A )
o1, o (L +%) o= L (Rt ite)
P 2 A AT 0 2 Ags 7
A;; > 0 is the largest root of A;(A) = det[ —AE,] =0, —A;; < 0 is the smallest root of the
equation d;;(A) = det[D;; — AE,] = (z,] e {1,...,6}, j #1), A;; > 0; a strategy profile
Ut =(ur,...,uf) + (— Yo )@P() .., =D (an)OF (t)y).

So, we show that the strategy profile U” ¢ {4 found in the previous section of the
present paper is just a combination (Uf ,Uf) = U”, where Uf, = (U, U], Uf) and
Uk, = (UL, UL, UF) are found in (17)-(19). The proof of the validity of (29) is pre-
sented in article [7] for the game I';, where the strategies Uﬁ = (UF,Ur Uf) e g,
are frozen (see Proposition 3.1 from [7] for o = 1, § = aj, v = «j). Moreover, these
(UF,U3,UF) = UL, just realize , max in (29) and this fact in combination with Prop-

K1 &2EKy
erty 0.1 implies that (Uf ,Uf) = UP is Pareto maximal for the three-criterion problem

<y =y + us + us, Y(to) = Yo, Ur,, {Ji(U1,Us, Us, UL, o, yo)}i:1,273>. Hence, the explicit
form of UL, is UE, = (UF, U, UP)+ (~ D (a")@"(t)y, D3 (0")0" (t)y, — D5 (a*)0 (1))
and the corresponding payoffs can be found for UY, € Ug,. The validity of U} =
= (UF,UF,UE) + (=D (e")OF (t)y, —D5 ' (a*)OF (t)y, —Dg ' (a*)OF (t)y) and the explicit
form of payoffs (for UL, = (U{, UL, UL) are established in the same way. Thus, we obtain the
validity of the following theorem.

Theorem 6.1. Let for the differential coalitional game with non-transferable payoffs

Fd = <{K1 = {17 27 3}7 KQ = {47 57 6}}7 Eya {uKl}l=1,27 {3KZ(UK17 UK27t07 yO)}l=1,2>

the following restrictions be satisfied:

Dii > 0, Dij < O, Cz <0 (’l,j = 1, .. ,6, 7 7£ j), A11A22 < A12A21, A44A55 < A45A54.
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Then for the game ', the coalitional Pareto optimal solution is formed by the quadruple
(UI];p UII_(:v 3[(1 (Ullzlu UII_(727 th y0)7 3K2<UII_(717 U§27t07y0)) € uKl X LLKQ X R?) X R37
where U = (UL, U3, US) € My, UL, = (U, UF,UF) € Uk, UF + —D;(a*)0F(t)y

(1 =1,...,6) are symmetric constant matrices of dimensions n X n,
D;(a*) = ajDyi(a) + a; Dy (a*) + a5 Dsi () + ayDy(a") + ai Ds; () 4+ ag Dei (o)
(i=1,...,6),

Oé*:]_ O[*:1 &‘F& a*:l 7A13+&;A23
! ’ 22\ Ay Ay )’ 52 As3 ’

ot ael(hAe) (et
4 ’ b 2 A54 A55 ’ 0 A66 ’

continuous symmetric matrix of dimensions n X n

DO | =

of(t) = {C‘l(a*) + /tl9 [DyY(a*) 4+ Dy (e) + ...+ Dyt (a")] dr} ,

I b0, vo) = Ik, (UR,, Ug, - to, o) =
= (31U, Uk, to,40), J2(UK,, Uley o, 90), Js(Uky , Uiy s to, o))
Jie[tos o] = I (UE,, Uk, o, o) =
= (34(UE,, Uigy to, 40), I5(Uke, » Uk, to, 90), J6(Ukey» Uk, s tos o) )
3% = (%0O1(t0)y0, YoO2(t0)yo, YoOs(to)yo) , 3% = (40O4(to)y0, Y0Os(to)yo, YoOs(to)yo) ,

6
Cla®) =) aiC;,
=1

9
O,(t) = [Yﬁl(t)}/ [Ci —/ Y'(1)0F (r)M(1)eF (7)Y (1) dT:| Yt (i=1,...,6),
t
Y (t) is a fundamental matrix of solutions for the system y = N(t)y, Y (V) = E,,,
6
> Dfl(oé*)Dz‘ijl(Oé*)] ,
j=1
where N\;; > 0 is the largest root of A(N)det [D;; — AE,] = 0, —A;; < 0 is the smallest root of

the equation 6;;(A) = det [D;; — AE,] =0 (i,j € {1,...,6}, i # j).

In this case, both coalitions are internally and externally stable.

N(t) == D a)0" (1), Mi(t) = 0" ()

Proof. It was established in [7] that if D;; > 0 then a Nash equilibrium does not exist in
the game Iy, but due to Proposition 5.1 from [7] there may be an objection to the internal stability
of coalition K (i.e., there are exists U =+ ay and a* = const > 0 such that for all & > o* we
have 31<Uir, UQP, U?{D, UII_(;, to, yo) > 31(UP, to, yo))

Due to Proposition 5.4 from [7] and Dy, < 0, in response to the objection, the player 2 from
coalition K| must use &r; > 0 such that for all o« > &; and UQC =+ ay we have

Jl(Uira U207 U?fja UII_(:a th yO) < ‘31(UP7 th yO)
Similarly, in view of Dsy > 0, there exists a number a > 0 such that for all & > a, we have
32<U1T7 U207 U?fj7 Uligu to, yO) > 32(U1T7 U27 U3Pv Ullggu to, yO) VU, € Us.

But then, for the strategy U2C and o > max{ay, ay}, the last two strict inequalities are combined
into a counter-objection to the internal stability of coalition K; by player 1.

Thus, we have established the internal stability of /. The internal stability of K is estab-
lished in the same way. [l
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Conclusion

Now we have established that, if restrictions (16) are satisfied, then in the game I'; there exists
a coalitional Pareto-optimal solution (its explicit form can be found in Theorem 6.1). At the end of
the paper, we would like to mention that the techniques proposed here can be used to investigate
the stability of other coalition structures.
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B. U. ’Kykoeckuii, JI. B. ZKykoeckas, C. H. Caukos, E. H. Caukoea
Koanunuonnoe Ilapero-ontumanbHoe pemeHue oqHoi AuddepeHunanbHoil Hrpbl

Knouegvle crnosa: paBHOBecue mo Homry, paBHOBecHe yrpo3 M KOHTPYTPO3, ONTHUMaIbHOCTH 1o [lapero,
KOAJIHIIHUSI.

VYIK: 519.834

DOI: 10.35634/2226-3594-2024-63-02

Crarps mocBsnieHa auddepeHIranbHBIM TO3UIUOHHBIM KOATWIMOHHBIM UIpaM ¢ HeTpaHc(epadeabHbI-
MH BBIMTPBIIIAMH (MTpaM 0e3 TOOOYHBIX TUIaTeXei). ABTOPBI HAJEIOTCS, YTO MCCIEIOBAHUS PaBHOBECHS
yrpo3 U KOHTPYIpo3 Al OECKOAIMIIMOHHBIX WTP, MPOBEICHHBIE B MOCIEAHUE TOIBI, TIO3BOJST OXBaTUThH
HEKOTOpbIe acHeKThl KOAJMIIMOHHBIX UTP ¢ HeTpaHc(hepaOenbHBIMU BBIUTPHIIIaMU. B HacTosmei crarbe
MBI PacCMaTPUBAEM BOIPOCHI BHYTPEHHEH M BHEIIHEW YyCTOMYMBOCTU KOQIMLMK IS Klacca MO3ULUOH-
HeIX auddepernmansaex urp. Aot nuddepeHuanbHoN MO3NITMOHHON JTHHEHHO-KBaAPATHIHON UTPHI IIIe-
CTH UT'POKOB C IByXKOAJHMLIMOHHON CTPYKTYpOH MOIy4eHbI KO3 QUIUCHTHBIE KPUTEPUH, 00eCTIeUnBAOLIIE
BHYTPEHHIOIO ¥ BHEIIHIOK YCTOWYHBOCTh KOAJIHIIMOHHOMN CTPYKTYpHI.
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11.

12.
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