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Introduction

By the end of the last century, four research directions had been formed in the theory of po-
sitional differential games (PDG): non-cooperative, cooperative, hierarchical and coalitional vari-
ants of games. Among coalitional games, there are games with transferable payoffs (games with
side payments in which players can share their profits during the game) and with non-transferable
payoffs (games without side payments when no splitting of payoffs is allowed). The coalitional
games with side payments are being actively explored at the Faculties of Applied Mathematics
and Management Processes of St. Petersburg State University and the Institute of Mathemat-
ics and Information Technologies of Petrozavodsk State University (Professors L. A. Petrosyan,
V. V. Mazalov, E. M. Parilina, A. N. Rettieva and their numerous domestic and foreign follow-
ers) [1–6]. The theory of coalitional PDG without side payments is just beginning its formation
on the basis of the objections and counter-objections equilibrium; this theory is being investi-
gated at the Department of Optimal Control of the Faculty of Computational Mathematics and
Cybernetics of Moscow State University [7–10]. In this paper we will use this approach to
investigate a coalitional six-persons PDG without side payments and with a two-coalition struc-
ture {K1 = {1, 2, 3}, K2 = {4, 5, 6}}.

Moreover, we propose a similar approach to the construction of optimal (in the formalized
sense below!) solutions in coalitional DPGs based on the ideas of the Nash equilibrium principle
and the Bellman dynamical programming method.

Recall that in 1949, a twenty-one-year-old graduate student at Princeton University John
Forbes Nash proposed in his dissertation the concept of solving a non-cooperative game, later
called Nash equilibrium (NE) which is a crucial concept in non-cooperative games and their ap-
plications in various sciences (mathematical economics, sociology, systems analysis, and military
sciences). For his work, Nash was one of the recipients (together with Harshanyi and Selten)
of the Nobel Memorial Prize in Economic Sciences in 1994. Opening almost any modern jour-
nal on game theory, operations research, systems analysis and mathematical economics now, we
will almost certainly meet with papers that touch on certain issues related to Nash equilibrium.
However, “there are spots on the sun”. These “spots” may be the following ones: internal and
external instability of a set of Nash equilibrium situations; instability with respect to two or more
players deviations from the equilibrium (NE is stable with respect to the deviation of only one of
the players); NE may not exist; improvability; absence of equivalence and interchangeability; etc.
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In these cases, the authors see [9] two ways out. First, limit yourself to mathematical models that
are free of some of the listed negative properties. Second, introduce new concepts of equilibrium
other than NE. Here, in our opinion, the equilibrium of objections and counter-objections [7, 8]
and the Berge equilibrium [9, 10] are promising. In addition, in this paper we use Nash ideas to
formalize a Pareto solution for coalitional PDGs.

We consider a non-cooperative game in normal form described by the triple:

Γ = 〈N, {Xi}i∈N , {fi(x)}i∈N〉.

Here N = {1, . . . , N} is the set of players’ numbers, the set of strategies xi of the player i
is Xi ⊂ R

ni . The players choose their strategies xi ∈ Xi (i ∈ N) simultaneously. As a result,

we get a strategy profile x = (x1, . . . , xN ) ∈ X =
∏

i∈N

Xi. The aims (interests) of the players

are determined by the values (payoffs) of payoff functions fi(x) (i ∈ N). For every player i,
his objective point in the game Γ is to choose his strategy so that his payoff will be as large as
possible.

D e f i n i t i o n 0.1. A pair (xe, f e = f(xe)) ∈ X × R
N is called a Nash equilibrium of the

game Γ if N equations

max
xi∈Xi

fi(x
e‖xi) = fi(x

e) (i ∈ N) (1)

take place. Here we use the generally accepted in game theory designations

(xe‖xi) =
(

xe
1, . . . , x

e
i−1, xi, x

e
i+1, . . . , x

e
N

)

.

Equations (1) imply immediately three important conditions of Nash equilibrium (NE). First,
NE is stable under a deviation of a separate player from it. Second, NE satisfies the property of
individual rationality, i. e.,

fi(x
e) > max

xi∈Xi

min
x
−i∈X−i

fi(xi, x−i) (i ∈ N)

(here −i = N \ {i} = {1, . . . , i − 1, i + 1, . . . , N}). Third, in the case of a zero-sum game
(i. e., when in Γ the set of player’s numbers is N = {1, 2} and f1(x) = −f2(x) = f(x)),
xe coincides with the saddle point (xe

1, x
e
2) ∈ X1 × X2 determined by the chain of equalities

max
x1∈X1

f(x1, x
e
2) = f(xe

1, x
e
2) = min

x2∈X2

f(xe
1, x2). Moreover, Definition 0.1 immediately answers two

questions: 1) how should player i ∈ N act in the game? (the answer: to use xe
i ∈ Xi); 2) what

kind of payoff will he get? (the answer: fi(xe)).
Let also the game Γ be placed into the correspondence to the N-criterion problem

Γυ = 〈X, {fi(x)}i∈N〉.

Here the set X of alternatives x coincides with the set of strategy profiles of the game Γ, the
criterion fi(x) coincides with the scalar payoff function fi(x) of the player i ∈ N.

D e f i n i t i o n 0.2 (see [11–13]). An alternative xP ∈ X is called a Pareto maximal alter-

native in the problem Γυ, if for any x ∈ X the system of N inequalities fi(x) > fi(x
P ), i ∈ N,

is incompatible, besides at least one inequality is strict. The pair
(

xP , fP = f(xP )
)

∈ X × R
N

is called a Pareto maximum of the problem Γυ; recall that f = (f1, . . . , fN) ∈ R
N .

It follows immediately from Definition 0.2 that when using an alternative other than xP :
1) it is impossible to increase all criteria fi(x

P ) (i ∈ N) at the same time; 2) if at least one of the
components fi(x

P ) of the vector f(xP ) increases, then at least one of the others will inevitably
decrease. Moreover, Karlin ’s Lemma [14] is obvious:
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P r o p e r t y 0.1. If there exist constants αi > 0 (i ∈ N) such that

max
x∈X

∑

i∈N

αifi(x) =
∑

i∈N

αifi(x
P ), (2)

then xP is a Pareto maximal alternative for the problem Γυ.

We designate the operation of Pareto maximum construction (2) as

MAXP
x∈Xf(x) = f(xP ) = fP ,

i. e.,

MAXP
x∈Xf(x) = max

x∈X
α′f(x) = α′f(xP ) (3)

for some constant N-vector α = (α1, . . . , αN), αi > 0 (i ∈ N); the prime means transposition
(α′ is row N-vector).

§ 1. Basic concepts of coalitional game theory

Here we move on to the possible version of coalitional game Γ. Let a coalition structure

be given on the set N. A coalition structure is a partition of the set N into pairwise disjoint
subsets (coalitions) of N, the union of which equals N. We have restricted ourselves to the two
coalitions K1 = {1, 2, 3} and K2 = {4, 5, 6} for the game Γ, N = K1 ∪K2 and K1 ∩K2 = ∅.
Players within their coalition Kl (l = 1, 2) have the possibility to jointly choose their strategy

xKl
= {xi| i ∈ Kl} ∈ XKl

=
∏

i∈Kl

Xi. The set of all such strategies xKl
is designated as XKl

.

Then every strategy profile x ∈ X of the game Γ can be written as x = (xK1
, xK2

). Payoff vector-
function of coalition Kl is designated as fKl

(xK1
, xK2

) = (fm(xK1
, xK2

) |m ∈ Kl) (l = 1, 2),
so the payoff N-vector function (a vector criterion of the problem Γυ) is f(x) = f(xK1

, xK2
) =

= (fK1
(xK1

, xK2
), fK2

(xK1
, xK2

)).
As a result, we move from the original non-coalition version of the game Γ to the coalitional

game
G = 〈N = {K1 ∪K2}, {Kl}l=1,2, {XKl

}l=1,2, {fKl
(xK1

, xK2
)}l=1,2〉 .

The players of a separate coalition cooperatively choose a coalition strategy, fulfilling two
requirements: individual and collective rationality.

The individual rationality condition means that the strategy profile xP provides for the ith
player a payoff which is not less than his maximin payoff, namely

fi(x
P ) > max

xi∈Xi

min
x
−i∈X−i

fi(xi, x−i) = min
x
−i∈X−i

fi(x
g
i , x−i) = f

g
i 6 fi(x

g
i , x−i) ∀x−i ∈ X−i, i ∈ N,

where −i = N \ {i} = {1, . . . , i− 1, i+ 1, . . . , N}, x−i = (x1, . . . , xi−1, xi+1, . . . , xN) ∈ X−i =

=
∏

j∈N\{i}

Xj.

Note that, for the class of linear-quadratic games considered in this paper, such maximins do
not exist [8] and therefore we do not take into account the conditions of individual rationality.

Turn to the collective rationality condition. For the members of a separate coalition, for exam-
ple K1, it comes down to the Pareto maximality (in relation to the partners from this coalition K1),
namely

MAXP
xK1

∈XK1

fK1
(xK1

, xP
K2
) = fK1

(xP
K1
, xP

K2
).

Thus, we come to the following definition.
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D e f i n i t i o n 1.1. A strategy profile xP = (xP
K1
, xP

K2
) ∈ X = XK1

× XK2
is called coali-

tional Pareto-optimal (CPO) for the game G if

{

MAXP
xK1

∈XK1

fK1
(xK1

, xP
K2
) = fK1

(xP
K1
, xP

K2
),

MAXP
xK2

∈XK2

fK2
(xP

K1
, xK2

) = fK2
(xP

K1
, xP

K2
).

(4)

It is easy to see that (4) is a modification of (1) for the case of singleton coalitions in Γ (the op-
eration max

xi∈Xi

from (1) is replaced to the operation of Pareto maximum construction MAXP
xK

l
∈XK

l

from (3) and (4) is a modification of NE). Naturally, the “sun spots” mentioned above, character-
istic of NE, also take place for CPO.

In our opinion, Definition 1.1 is no less promising for research than Definition 0.1. However,
next we will focus on the issues of internal and external stability of coalitions in PDG.

§ 2. Internal and external stability of coalition

Let (xP
K1
, xP

K2
) = xP be a coalitional Pareto-optimal (CPO) strategy profile (determined

by (4)) and the players have decided to stick to this strategy in the coalitional game G. The
reasons for this choice, for example, for the coalition K1 are:

first, xP
K1

is a Pareto maximal alternative of the problem G1 =
〈

XK1
, fK1

(xK1
, xP

K2
)
〉

(players
from K1 strive to choose their strategies so that for everyone his payoff function value will be
as large as possible and in the multicriteria problem G1 the strategy xP

K1
provides the Pareto

maximum for fK1
(xK1

, xP
K2
));

second, the requirement of internal stability of K1. We call K1 an internally stable coalition
if none of its players has a desire to leave K1: either go to the coalition K2, or form a new
third coalition consisting of only one “defector”. Let’s assume that in K1 at least one of the
remaining players has the opportunity to “punish the defector”. Formally, we define the process
of punishment as follows.

Let player 1 have an objection to the internal stability of K1, i. e., he has a strategy xT
1 ∈ X1

such that

f1(x
T
1 , x

P
2 , x

P
3 , x

P
K2
) > f1(x

P
K1
, xP

K2
). (5)

In respond to this objection, one of the remaining in K1 players, for instance, player 2 has a
counter-objection if he has a strategy xC

2 ∈ X2 for which two inequalities

f1(x
T
1 , x

C
2 , x

P
3 , x

P
K2
) < f1(x

P
K1
, xP

K2
), (6)

f2(x
T
1 , x

C
2 , x

P
3 , x

P
K2
) ≥ f2(x

T
1 , x2, x

P
3 , x

P
K2
) ∀x2 ∈ X2. (7)

are satisfied.
The first of them “nullifies” the effect of the objection because (6) reduces the payoff of the

“threatening” player 1 to less than it was f1(xP ) = f1(x
P
K1
, xP

K2
). The second inequality (7) even

“pushes” player 2 to use xC
2 because as a result, player 2 will achieve the biggest payoff he can

only dream of. Similarly, the counter-objection of player 3 in response to the objection of player 1
to the internal stability of K1 is determined, as well as the reaction of the two remaining players
to the desire of the one player from the coalition K1 to leave this coalition.

D e f i n i t i o n 2.1. The coalition K is called internally stable if, in response to the possibility
of any player of the coalition K to leave K, at least one of the remaining players has a counter-
objection (of the form (6) and (7)).

Note that the absence of objections leads, of course, to the uselessness of counter-objections.
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Let’s move on to the external stability of the coalition (for example, K1 in the game G).
Assume that the unwillingness of any player from K2 to leave the coalition K2 and join K1

characterizes the external stability of K1. It is also obvious that the internal stability of K2

“provides” external stability of K1 and vice versa.
Thus, the internal stability of each coalition in the coalition structure guarantees internal and

external stability, which leads to the stability of the coalition structure, i. e., to the unwillingness
to break the existing division of players into pairwise disjoint subsets.

Finally, we note that we achieve the fulfillment of inequalities (6) and (7) for the game PDG
discussed later in Section 3 by special coefficient restrictions on the payoff functions of the
players from K1.

The further material of the paper is devoted to the construction of an explicit form of CPO
(determined by 1.1) for a quite general class of PDG.

§ 3. Differential linear-quadratic six-player game

We consider a differential linear-quadratic six-player game described by

ΓD =
〈

N, {K1 = {1, 2, 3}, K2 = {4, 5, 6}} , Σx, {Ui}i∈N, {Ji(U, t0, x0)}i∈N
〉

, (8)

Here N = {1, 2, 3, 4, 5, 6} is the set of players; a coalition structure (the division of N into pairwise
disjoint subsets: N = K1 ∪ K2 ∧ K1 ∩ K2 = ∅) is given; a controlled dynamic system Σx is
linear (in x and ui (i ∈ N)):

ẋ = A(t)x+
∑

i∈N

ui, x(t0) = x0,

the game is finished at the moment ϑ > 0 and ϑ is fixed; the game functioning interval t ∈ [t0, ϑ],
0 6 t0 6 t 6 ϑ; elements of matrix A(t) of dimensions n × n are assumed to be continuous
on [0, ϑ] (this fact will be indicated by A(·) ∈ Cn×n[0, ϑ]); x ∈ R

n is an n-dimensional state
vector; a pair (t, x) ∈ [t0, ϑ] × R

n is a position of the game; the initial position is (t0, x0);
a strategy of player i is ui ∈ R

n (i ∈ N); since u = (u1, . . . , u6) ∈ R
6n then the coalition

strategies are uK1
= (u1, u2, u3) and uK2

= (u4, u5, u6), hence u = (uK1
, uK2

); the set of
strategies of player i ∈ N is (according to [15])

Ui = {Ui ÷ ui(t, x) = Qi(t)x | ∀Qi(·) ∈ Cn×n[0, ϑ]},

the strategy profile is U = (U1, . . . , U6) ∈ U =
∏

i∈N

Ui, UKl
=
∏

j∈Kl

Uj (l = 1, 2). A play of the

game (8) is organized as follows. Each player chooses and uses his strategy Ui÷ui(t, x) = Qi(t)x
(i. e., uses his specific matrix Qi(·) ∈ Cn×n[0, ϑ]). Then the solution x(t), t ∈ [0, ϑ], is constructed
for the system of homogeneous and linear differential equations with continuous (in t) coefficients

ẋ(t) =

[

A(t) +
∑

i∈N

Qi(t)

]

x, x(t0) = x0.

By means of this solution the realizations of the strategies ui[t] = ui(t, x(t)) = Qi(t)x(t) (i ∈ N)
chosen by the players are formed. Note, that n-vectors ui[t] are continuous on [t0, ϑ]. On such a
continuous pairs (x(t), u[t] = (u1[t], . . . , u6[t])) the payoff function of player i is a priori defined
as a quadratic functional

Ji (U, t0, x0) = x′(ϑ)C ix(ϑ) +

∫ ϑ

t0

(

∑

j∈N

u′
j[t]Dijuj[t]

)

dt (i ∈ N), (9)
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the prime means transposition, the matrices C i and Dij of dimensions n × n are assumed to be
symmetric without loss of generality. Note, in (9) the first term is called a terminal term and
the second one is called an integral term. The value of (9) is called the payoff of player i in the
game ΓD. In terms of “meaning”, the players within each coalition cooperatively choose their
strategies so that the components of their three-coordinate payoffs JKl

= (Jr|r ∈ Kl) (l = 1, 2)
will be as large as possible (and satisfy the condition of individual rationality). When choosing the
optimal solution, we will use the coalitional Pareto-maximal strategy profile (see Definition 1.1).

Firstly, we simplify the controlled system of ΓD using the substitution y = X−1(t)x where
the matrix X(t) of dimensions n × n represents the fundamental system of solutions for the
equation ẋ = A(t)x, X(ϑ) = En (En is the identity matrix of dimensions n×n). As a result, the
system Σx turns into Σy:

dy

dt
=
∑

i∈N

ui, y(t0) = X−1(t0)x0,

the set Ui of strategies of player i turns into

Ui = {Ui ÷ ui(t, y) = Qi(t)y | ∀Qi(·) ∈ Cn×n[0, ϑ]} ,

the payoff function Ji (U, t0, x0) of the ith player turns into

Ji (U, t0, y0) = y′(ϑ)Ciy(ϑ) +

∫ ϑ

t0

(

∑

j∈N

u′
j[t]Dijuj[t]

)

dt (i ∈ N), (10)

where the constant matrices Ci, Dij of dimensions n× n are symmetric.
As a result, game (8) is reduced to the form

Γd = 〈N, {K1, K2} , Σy, {Ui}i∈N, {Ji(U, t0, y0)}i∈N〉 . (11)

Let’s give a possible economic interpretation for (11). Suppose there is an industrial cluster
consisting of six companies that are, in addition, in two associations. As a rule, the company’s
goal is to simultaneously reduce costs (Ci < 0) and increase internal investment (Dii > 0) in its
own production. An additional condition is the opposite interests of the other cluster members
(if Dij < 0 (i 6= j)).

In view of this interpretation, we assume that

Ci < 0, Dii > 0, Dij < 0 (i, j ∈ N; i 6= j). (12)

Now we should apply Definition 1.1 to the differential game (11). Namely, for each coali-
tion K1 and K2 we introduce a set of its strategies UKl

∈ UKl
=
∏

r∈Kl

Ur (l = 1, 2). Besides we

use a three-dimensional functional of its payoffs, which, in view of U = (UK1
, UK2

), is of the
form JKl

= (Jj |j ∈ Kl) (l = 1, 2). Then

JK1
(U, t0, y0) = (J1(UK1

, UK2
, t0, y0), J2(UK1

, UK2
, t0, y0), J3(UK1

, UK2
, t0, y0))

and

JK2
(U, t0, y0) = (J4(UK1

, UK2
, t0, y0), J5(UK1

, UK2
, t0, y0), J6(UK1

, UK2
, t0, y0)).

D e f i n i t i o n 3.1. A pair (UP ; JP ) =
(

UP
K1
, UP

K2
; JP

K1
(UP , t0, y0), J

P
K2
(UP , t0, y0)

)

∈ U×R
6

is called a coalitional Pareto-optimal solution (CPOS) of the game Γd if for all initial positions

(t0, y0) ∈ [t0, ϑ]× R
n, y0 6= 0n,
{

MAXP
UK1

∈UK1

JK1
(UK1

, UP
K2
, t0, y0) = JP

K1
(UP , t0, y0),

MAXP
UK2

∈UK2

JK2
(UP

K1
, UK2

, t0, y0) = JP
K2
(UP , t0, y0),
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where, for example, MAXP
UK1

∈UK1

JK1
(UK1

, UP
K2
, t0, y0) means a Pareto maximality of the three-

dimensional functional JK1
(UK1

, UP
K2
, t0, y0) on the set UK1

.

In this paper the Pareto maximum will be realized by following Property 0.1 (by finding the
scalar maximum for the linear convolution of the three components JK1

(UK1
, UP

K2
, t0, y0) with

positive coefficients).

§ 4. Auxiliary assertions from the theory of matrices and quadratic forms

Further, for a constant and symmetric matrix D of dimensions n × n, the inequality D > 0
(< 0) means that the quadratic form x′Dx is positive definite (negative definite), where x ∈ R

n.

P r o p o s i t i o n 4.1 (see [16, p. 108]). The two chains of implications:

a) D > 0 ⇒ 0 6 λx′x 6 x′Dx 6 Λx′x ∀x ∈ R
n;

b) D < 0 ⇒ −Λx′x 6 x′Dx 6 −λx′x ∀x ∈ R
n;

take place. Here λ(−Λ) is the smallest root and Λ(−λ) is the largest root of the characteristic

equation det [D − λEn] = 0; 0 < λ 6 Λ, En is the identity matrix of dimensions n× n.

P r o p o s i t i o n 4.2. Let Λ be the largest root of the characteristic equation det [D−λEn] =
= 0 and D > 0. Then

a) Λ < nM , where M is a maximum of modules of elements dij of matrix D = (dij) [16];

b) Λ < min
i=1,...,n

n
∑

j=1

|dij| [17].

P r o p o s i t i o n 4.3. The equivalence D < 0 ⇔ (−1)D = −D > 0 is valid (here we

multiply all the elements of constant symmetric n × n-matrix D by minus one) and then the

largest root −Λ > 0 of the characteristic equation det [−D − λEn] = 0 coincides with the

smallest root of the characteristic equation det [D − λEn] = 0.

R e m a r k 4.1. According to Proposition 4.3 to estimate the smallest root of the characteristic det [D−

λEn] = 0 it is sufficient to estimate the largest root of the characteristic equation det [−D − λEn] = 0.

P r o p o s i t i o n 4.4 (the analogue of Lemmas 4.1 and 4.2 from [9]). The following implica-

tions are valid (i, j ∈ N, i 6= j):

(a) Dii > 0 ⇒ for every U∗
−i ∈ U−i and U∗

i ∈ Ui there exists its own constant

α∗
i (U

∗
i , U

∗
−i, t0, y0) > 0

such that for all constants α > α∗
i (U

∗
i , U

∗
−i) and for the strategy Ui÷αy the strict inequality

Ji(Ui, U
∗
−i, t0, y0) > Ji(U

∗
i , U

∗
−i, t0, y0)

is valid. Recall that the payoff function Ji is determined in (10) and

−i ∈ N \ {i} = {1, . . . , i− 1, i+ 1, . . . , N};

(b) Dij < 0 (i 6= j) ⇒ for all U∗
j ∈ Uj and U∗

−j ∈ U−j there exists its own constant

α∗
j (U

∗
j , U

∗
−j , t0, y0) > 0

such that for ∀α > α∗
j (U

∗
j , U

∗
−j) and Uj ÷ αy we get

Jj(Uj, U
∗
−j , t0, y0) < Jj(U

∗
j , U

∗
−j , t0, y0).
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And lastly, the following propositions are established in [7, 8].

T h e o r e m 4.1. If (12) is satisfied for the game Γd, then:

a) a Nash equilibrium does not exist;

b) min
Ui∈Ui

Ji(Ui, U−i, t0, y0) does not exist, and that is precisely why, when determining the

optimal solution of the game Γd, the condition of individual rationality can be ignored;

c) if, in addition to (12), restrictions on the roots of the corresponding characteristic equations

Λ11Λ22 < Λ12Λ21 are satisfied, then in the game (11) there exists [7] a Pareto equilibrium of

objections and counter-objections.

In conclusion, we turn to the central result of this paper: the construction of an explicit form
of a CPO-solution for coalitional game (11). To do this we will use Property 0.1 and Bellman’s
dynamical programming method. It will also be necessary to solve one static N-criterion problem,
with which the next section begins.

§ 5. Pareto maximal strategy profiles and Pareto payoffs

Let us set out some auxiliary assertions (see Lemma 5.1 below).
Consider a static six-criterion problem

Γ6 =
{

R
6n, {fi(u) = u′

1Di1u1 + . . .+ u′
6Di6u6}i=1,...,6

}

,

in the problem Γ6 the decision maker’s aim is to choose an alternative u = (u1, . . . , u6) ∈ R
6n

so that the values of all 6 components of the vector criterion f(u) = (f1(u), . . . , f6(u)) will be
as large as possible. Here the analogue of Definition 0.2 is the following: an alternative uP is
Pareto maximal for the game Γ6 if for all u ∈ R

6n the system of inequalities fi(u) > fi(u
P )

(i = 1, . . . , 6), where at least one inequality is strict, is incompatible.
Below we use the analogue of Property 0.1.

L e m m a 5.1. Let in Γ6 the constant matrices Dij of dimensions n×n be symmetric, and the

positive numbers Λii, Λij (i, j = 1, . . . , 6, i 6= j) satisfy the inequalities

Dii > 0, Dij < 0 (i 6= j), Λ11Λ22 < Λ12Λ21, Λ44Λ55 < Λ45Λ54.

Then for constants α∗
i (i ∈ N) such that

α∗
1 = 1, α∗

2 =
1

2

(

Λ11

Λ21

+
Λ12

Λ22

)

, α∗
3 =

1

2

(

Λ13 + α∗
2Λ23

Λ33

)

,

α∗
4 = 1, α∗

5 =
1

2

(

Λ44

Λ54
+

Λ45

Λ55

)

, α∗
6 =

1

2

(

Λ46 + α∗
5Λ45

Λ66

)

,

(13)

the quadratic forms

f(u) = α∗
1f1(u) + α∗

2f2(u) + α∗
3f3(u) + α∗

4f4(u) + α∗
5f5(u) + α∗

6f6(u) =

= u′
1D1(α

∗)u1 + . . .+ u′
6D6(α

∗)u6

are negative definite. Here

Di(α
∗) = α∗

1D1i + α∗
2D2i + α∗

3D3i + α∗
4D4i + α∗

5D5i + α∗
6D6i,

besides, Λii > 0 is the largest root of the characteristic equation ∆ii(Λ) = det[Dii − ΛEn] = 0
and −Λij < 0 is the largest by absolute value root of the equation δij(Λ) = det[Dij −ΛEn] = 0,
(i, j ∈ {1, . . . , 6}, j 6= i).
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P r o o f. Due to the matrices Dii > 0, Dij < 0 (i, j ∈ N; i 6= j) of dimensions n × n

are symmetric, the roots of the characteristic equations ∆ii(Λ) = 0 and δij(Λ) = 0 are real and
Λii > 0, −Λij < 0 (i, j ∈ N, i 6= j). Since u′

iDiiui 6 Λiiu
′
iui and ujDiju

′
j 6 −Λiju

′
juj (see

Proposition 4.1) then we write

f(u) = α∗
1f1(u) + α∗

2f2(u) + . . .+ α∗
6f6(u) =

= u′
1[α

∗
1D11 + α∗

2D21 + . . .+ α∗
6D61]u1 + . . .+ u′

6[α
∗
1D16 + α∗

2D26 + . . .+ α∗
6D66]u6 6

6 [α∗
1Λ11+α∗

2(−Λ21)+. . .+α∗
6(−Λ61)]u

′
1u1+. . .+[α∗

1(−Λ16)+α∗
2(−Λ26)+. . .+α∗

6(+Λ66)]u
′
6u6.

The components α∗
i of the vector-column α∗ = (α∗

1, α
∗
2, α

∗
3, α

∗
4α

∗
5, α

∗
6) are given in (13). Since

u′
iDiiui 6 Λiiu

′
iui and u′

jDijuj 6 −Λij‖uj‖
2 the scalar function f(u) < 0 for all u ∈ R

6n,
u 6= 06n, if all the inequalities from Table 1 are satisfied.

Table 1

Λ11α
∗
1 − Λ21α

∗
2 − Λ31α

∗
3 − Λ41α

∗
4 − Λ51α

∗
5 − Λ61α

∗
6 < 0

−Λ12α
∗
1 + Λ22α

∗
2 − Λ32α

∗
3 − Λ42α

∗
4 − Λ52α

∗
5 − Λ62α

∗
6 < 0

−Λ13α
∗
1 − Λ23α

∗
2 + Λ33α

∗
3 − Λ43α

∗
4 − Λ53α

∗
5 − Λ63α

∗
6 < 0

−Λ14α
∗
1 − Λ24α

∗
2 − Λ34α

∗
3 + Λ44α

∗
4 − Λ54α

∗
5 − Λ64α

∗
6 < 0

−Λ15α
∗
1 − Λ25α

∗
2 − Λ35α

∗
3 − Λ45α

∗
4 + Λ55α

∗
5 − Λ65α

∗
6 < 0

−Λ16α
∗
1 − Λ26α

∗
2 − Λ36α

∗
3 − Λ46α

∗
4 − Λ56α

∗
5 + Λ66α

∗
6 < 0

Moreover, we get for











Λ11α
∗
1 − Λ21α

∗
2 − Λ31α

∗
3 < 0,

−Λ12α
∗
1 + Λ22α

∗
2 − Λ32α

∗
3 < 0,

−Λ13α
∗
1 − Λ23α

∗
2 + Λ33α

∗
3 < 0,

(14)

and










Λ44α
∗
4 − Λ54α

∗
5 − Λ64α

∗
6 < 0,

−Λ45α
∗
4 + Λ55α

∗
5 − Λ65α

∗
6 < 0,

−Λ46α
∗
4 − Λ56α

∗
5 + Λ66α

∗
6 < 0,

(15)

that all 6 strict inequalities from Table 1 take place, because with the exception of (14) and (15),
all the other terms are negative (since −Λij < 0, α∗

i > 0, i 6= j).
We establish that Λ11Λ22 < Λ12Λ21 and Λ44Λ55 < Λ45Λ54 yield the fulfilment of the first two

inequalities from Table 1. Really, if α∗
3 > 0 and 0 <

Λ11

Λ21
< α∗

2 <
Λ12

Λ22
(that follows immediately

from Λ11Λ22 < Λ12Λ21) then the first two strict inequalities (14) take place. Finally, the third in-

equality from (14) is valid for 0 < α∗
3 <

1

2

Λ13 + Λ23α
∗
2

Λ33
, where α∗

2 =
1

2

(

Λ11

Λ21
+

Λ12

Λ22

)

. Similarly,

α∗
4 = 1, α∗

5 =
1

2

(

Λ44

Λ54

+
Λ45

Λ55

)

, α∗
6 =

1

2

(

Λ46 + α∗
5Λ45

Λ66

)

imply the fulfilment of (15). �

P r o p o s i t i o n 5.1. If, in the differential game Γd,

Dii > 0, Dij < 0, Ci < 0 (i, j = 1, . . . , 6; i 6= j), Λ11Λ22 < Λ12Λ21, Λ44Λ55 < Λ45Λ54, (16)
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then, for the 6-criterion problem a Pareto maximum strategy profile UP , we have

UP =
(

UP
1 , U

P
2 , . . . , U

P
6

)

÷
(

uP
1 (t, y), u

P
2 (t, y), . . . , u

P
6 (t, y)

)

=

= uP (t, y) =
(

QP
1 (t)y,Q

P
2 (t)y, . . . , Q

P
6 (t)y

)

=

=
(

−D−1
1 (α∗)ΘP (t)y,−D−1

2 (α∗)ΘP (t)y, . . . ,−D−1
6 (α∗)ΘP (t)y

)

,

(17)

where ΘP (·) is a symmetric and continuous on [0, ϑ] matrix of dimensions n× n

ΘP (t) =

{

C−1(α∗) +

∫ ϑ

t

[

D−1
1 (α∗) +D−1

2 (α∗) + . . .+D−1
6 (α∗)

]

dτ

}−1

(18)

and constant symmetric n× n-matrices

Di(α
∗) = α∗

1D1i + α∗
2D2i + . . .+ α∗

6D6i (i = 1, . . . , 6), (19)

where positive numbers α∗
1, α

∗
2, . . . , α

∗
6 are determined in Lemma 5.1.

P r o o f. We will find the Pareto maximum strategy profile UP by applying Lemma 5.1. We
will specifically use Table 1 and the dynamical programming method (DPM) (see [12, p. 112]).
The application of DPM here includes two stages as follows. In the first stage, we will find
six positive numbers α∗

1, α
∗
2, . . . , α

∗
6 and a continuously differentiable scalar function V (t, y) =

= y′Θ(t)y, Θ(t) = Θ′(t) ∀t ∈ [0, ϑ] and n-dimensional vector functions ui(t, y, V ) (i ∈ N) such
that for all y ∈ R

n

V (ϑ, y) = y′C(α∗)y, C(α∗) = α∗
1C1 + α∗

2C2 + . . .+ α∗
6C6.

Using the scalar function

W (t, y, u1, . . . , u6, V ) =
∂V

∂t
+

[

∂V

∂y

]′

(u1 + . . .+ u6) + α∗
1u

′
1D1(α

∗)u1 + . . .+ α∗
6u

′
6D6(α

∗)u6,

in view of

(

∂V

∂y
= grady V

)

and

max
u1,...,u6

W (t, y, u1, . . . , u6, V ) = Idem {ui → ui(t, y, V ) (i = 1, . . . , 6)} (20)

for all (t, y, V ) ∈ [0, ϑ] × R
n+1, we will determine n-dimensional vector functions ui(t, y, V )

(i ∈ N). The fulfilment of

∂W

∂ui

∣

∣

∣

∣

u(t,y,V )

=
∂V

∂y
+ 2Di(α

∗)ui(t, y, V ) = 0n (i = 1, . . . , 6),

∂2W

∂u2
i

= 2Di(α
∗) < 0 (i = 1, . . . , 6),

(21)

(due to Lemma 5.1, Di(α
∗) < 0) for all (t, y) ∈ [0, ϑ)×R

n, is a sufficient condition for existence
of u(t, y, V ) in (20).

From (21), we get

ui(t, y, V ) = −
1

2
D−1

i (α∗)
∂V

∂y
(i = 1, . . . , 6). (22)
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Then

W (t, y, u(t, y, V ), V ) = W [t, y, V ] =
∂V

∂t
−

1

4

[

∂V

∂y

]′
(

D−1
1 (α∗) + . . .+D−1

6 (α∗)
) ∂V

∂y
.

Second stage. We will solve a partial differential equation

W (t, y, V ) = 0

under the boundary-value condition (C(α∗) = α∗
1C1 + α∗

2C2 + . . .+ α∗
6C6)

V (ϑ, y) = y′C(α∗)y ∀y ∈ R
n.

The solution V = V P (t, y) is constructed in the class of the quadratic forms V P (t, y) = y′ΘP (t)y
with a matrix ΘP (t) =

[

ΘP (t)
]′

of dimensions n× n. Then, for all t ∈ [0, ϑ] and for all y ∈ R
n,

we get
W
[

t, y, V (t, y) = y′ΘP y
]

= 0, V (ϑ, y) = y′C(α∗)y ∀y ∈ R
n.

Both of these requirements will hold if the symmetric matrix ΘP (t) of dimensions n×n is a solu-
tion of the matrix differential equation of Riccati type (0n×n is a null matrix of dimensions n× n):

Θ̇P (t)−ΘP (t)
(

D−1
1 (α∗) + . . .+D−1

6 (α∗)
)

ΘP (t) = 0n×n,

ΘP (ϑ) = C(α∗) = α∗
1C1 + α∗

2C2 + . . .+ α∗
6C6.

The solution ΘP (t) of this matrix equation is of the form (18) [12, p. 65]. Here we take into
account the implication

Ci < 0 (i = 1, . . . , 6) ⇒ C(α∗) = α∗
1C1 + α∗

2C2 + . . .+ α∗
6C6 < 0.

Finally, the validity of (17) follows from (22). Thus the Pareto maximum strategy profile UP is
of the form (17)–(19). �

Now, we will construct the Pareto maximum payoffs

JP =
(

JP
1 , . . . , J

P
6

)

=
(

J1(U
P , t0, y0), . . . , J6(U

P , t0, y0)
)

using the dynamical programming method [12].

P r o p o s i t i o n 5.2. Let requirements (16) from Proposition 5.1 be fulfilled, and, in the

game Γd, let six scalar continuous differentiable functions Vi(t, y) = y′Θi(t)y (i = 1, . . . , 6) be

found such that

1) Vi(ϑ, y) = y′Ciy ∀y ∈ R
n;

2) the system of six partial differential equations

∂Vi

∂t
+

[

∂Vi

∂y

]′

N(t)y + y′ΘP (t)Mi(t)Θ
P (t)y = 0,

Vi(ϑ, y) = y′Ciy ∀y ∈ R
n (i = 1, . . . , 6)

(23)

has a solution which is of the form Vi(t, y) = y′Θi(t)y, [Θi(t)]
′ = Θi(t) (i = 1, . . . , 6).

Then, for any initial position (t0, y0) ∈ [0, ϑ)× R
n, y0 6= 0n, we have

JP
i = Ji(U

P , t0, y0) = y′0Θi(t0)y0 (i = 1, . . . , 6).

In (23), the continuous matrices of dimensions n× n

N(t) = −
(

D−1
1 (α∗) + . . .+D−1

6 (α∗)
)

ΘP (t),
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Mi(t) = ΘP (t)
[

D−1
1 (α∗)Di1D

−1
1 (α∗) + . . .+D−1

6 (α∗)Di6D
−1
6 (α∗)

]

ΘP (t) (i = 1, . . . , 6),

matrices ΘP (t) and Di(α
∗) of dimensions n × n are given in (18) and (19), symmetric n × n

matrices

Θi(t) =
[

Y −1(t)
]′
{

Ci −

∫ ϑ

t

Y ′(τ)ΘP (τ)Mi(τ)Θ
P (τ)Y (τ) dτ

}

Y −1(t) (i = 1, . . . , 6), (24)

Y (t) is a fundamental matrix of solutions for the homogeneous system ẏ = N(t)y, y(ϑ) = En.

P r o o f. We construct the scalar functions

Wi[t, y, Vi] =
∂Vi

∂t
+

[

∂Vi

∂y

]′

N(t)y +
[

uP
1 (t, y)

]′
Di1u

P
1 (t, y) + . . .+

+
[

uP
6 (t, y)

]′
Di6u

P
6 (t, y) (i = 1, . . . , 6),

(25)

where n-dimensional vector functions uP
i (t, y) are determined in (17).

Next, we solve the system of six partial differential equations

Wi[t, y, Vi] = 0, Vi(ϑ, y) = y′Ciy ∀y ∈ R
n (i = 1, . . . , 6). (26)

The solution Vi(t, y) (i = 1, . . . , 6) of (26) is constructed in the class of the quadratic forms
Vi(t, y) = y′Θi(t)y, [Θi(t)]

′ = Θi(t) (i = 1, . . . , 6).
We will set up two facts.
First, the solution of system (25) and (26) satisfies the equality

Vi(t0, y0) = Ji(U
P , t0, y0) (i = 1, . . . , 6), (27)

where the strategy profile UP = (UP
1 , . . . , U

P
6 ) is of the form (17). Actually, if UP is a strategy

profile from (16)–(19), then, in view of (25) and (26), for the solution yP (t) of system ẏ = N(t)y,
y(t0) = y0 6= 0n, and also y = yP (t), we get

0 = Wi[t, y
P (t), Vi(t, y

P (t))] =
∂Vi(t, y

P (t))

∂t
+

[

∂Vi(t, y
P (t))

∂y

]′

N(t)yP (t) +

+

6
∑

j=1

[

uP
j (t, y

P (t))
]′
Diju

P
j (t, y

P (t)) = Wi[t] ∀t ∈ [t0, ϑ] (i = 1, . . . , 6).

Integrating both sides of this equality from t0 to ϑ and using the boundary-value condition
from (26) we obtain

0 =

∫ ϑ

t0

Wi[t] dt =

∫ ϑ

t0

dVi(t, y
P (t))

dt
dt+

∫ ϑ

t0

6
∑

j=1

[

uP
j (t, y

P (t))
]′
Diju

P
j (t, y

P (t)) dt =

= Vi(ϑ, y
P (ϑ))− Vi(t0, y

P (t0)) +

∫ ϑ

t0

6
∑

j=1

[

uP
j (t, y

P (t))
]′
Diju

P
j (t, y

P (t)) dt =

= y′(ϑ)Ciy(ϑ) +

∫ ϑ

t0

6
∑

j=1

[

uP
j (t, y

P (t))
]′
Diju

P
j (t, y

P (t)) dt− Vi(t0, y
P (t0)) =

= Ji(U
P , t0, y0)− Vi(t0, y

P (t0)) (i = 1, . . . , 6),

this result finally proves (27).
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Second, we will establish that the solution Vi(t, y) (i ∈ N) of system (26) has the form
Vi(t, y) = y′Θi(t)y, where the symmetric matrix Θi(t) of dimensions n × n can be represented
as (24). Actually, substituting Vi(t, y) = y′Θi(t)y into (26), we see that (24) will be valid if Θi(t)
(i = 1, . . . , 6) is a solution of the linear inhomogeneous matrix differential equation

Θ̇i +ΘiN +NΘi +ΘP (t)MiΘ
P (t) = 0n×n, Θi(ϑ) = Ci (i = 1, . . . , 6). (28)

Substituting Θi(t) from (24) into (28), we will make sure that the symmetric matrix Θi(t) of
dimensions n× n is really the solution of (28). This completes the proof of Proposition 5.2. �

R e m a r k 5.1. Combining Propositions 5.1 and 5.2 leads to the following end result concerning the
explicit form of the Pareto maximum solution (UP , JP ) ∈ U× R

6 for the game Γd.
Let in the game Γd:
1) constant symmetric matrices of dimensions n× n satisfy

Dii > 0, Dij < 0, Ci < 0 (i, j = 1, . . . , 6; i 6= j);

2) Λ11Λ22 < Λ12Λ21, Λ44Λ55 < Λ45Λ54.

Then for all (t0, y0) ∈ [0, ϑ) × R
n, y0 6= 0n, we have

UP ÷ uP (t, y) =
(

−D−1
1 (α∗)ΘP (t)y,−D−1

2 (α∗)ΘP (t)y, . . . ,−D−1
6 (α∗)ΘP (t)y

)

,

JP = (JP
1 , JP

2 , . . . , JP
6 ), JP

i = y′0Θi(t0)y0 (i = 1, . . . , 6),

and the symmetric matrices ΘP
i (t) and Θi(t) of dimensions n× n are of the form:

ΘP (t) =

{

C−1(α∗) +

∫ ϑ

t

[

D−1
1 (α∗) +D−1

2 (α∗) + . . .+D−1
6 (α∗)

]

dτ

}−1

,

Θi(t) =
[

Y −1(t)
]′
{

Ci −

∫ ϑ

t

Y ′(τ)ΘP (τ)Mi(τ)Θ
P (τ)Y (τ) dτ

}

Y −1(t) (i = 1, . . . , 6),

n × n-matrix Y (t) is a fundamental matrix of solutions for the homogeneous system ẏ = N(t)y,
Y (ϑ) = En, the symmetric matrices

C(α∗) = α∗
1C1 + α∗

2C2 + . . . + α∗
6C6, Di(α

∗) = α∗
1D1i + α∗

2D2i + . . .+ α∗
6D6i,

N(t) = −
(

D−1
1 (α∗) + . . .+D−1

6 (α∗)
)

ΘP (t),

Mi(t) = ΘP (t)
[

D−1
1 (α∗)Di1D

−1
1 (α∗) + . . . +D−1

6 (α∗)Di6D
−1
6 (α∗)

]

ΘP (t),

the positive numbers α∗
1, α

∗
2, . . . , α

∗
6 are defined by a recurrent way

α∗
1 = 1, α∗

2 =
1

2

(

Λ11

Λ21
+

Λ12

Λ22

)

, α∗
3 =

1

2

(

Λ13 + α∗
2Λ23

Λ33

)

,

α∗
4 = 1, α∗

5 =
1

2

(

Λ44

Λ54
+

Λ45

Λ55

)

, α∗
6 =

1

2

(

Λ46 + α∗
5Λ45

Λ66

)

,

where Λii (−Λij) is the largest (the smallest) root of the characteristic equation det [Dii − ΛEn] = 0

(respectively det [Dij − ΛEn] = 0) (i, j ∈ {1, . . . , 6}, i 6= j).
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§ 6. Explicit form of CPOS

Let’s move on to the main result of the present paper. We construct the explicit form of
coalitional Pareto optimal solution (CPOS) for the game Γd. According to Definition 1.1, for the
game Γd, under restrictions (16) the following equalities are valid:

{

MAXP
UK1

∈UK1

JK1
(UK1

, UP
K2
, t0, y0) = JK1

(UP , t0, y0),

MAXP
UK2

∈UK2

JK2
(UP

K1
, UK2

, t0, y0) = JK2
(UP , t0, y0),

which will follow from






















































max
UK1

∈UK1

[

α∗
1J1(UK1

, UP
K2
, t0, y0) + α∗

2J2(UK1
, UP

K2
, t0, y0) + α∗

3J3(UK1
, UP

K2
, t0, y0)

]

=

=
3
∑

j=1

α∗
jJj(U

P , t0, y0),

max
UK2

∈UK2

[

α∗
4J4(U

P
K1
, UK2

, t0, y0) + α∗
5J5(U

P
K1
, UK2

, t0, y0) + α∗
6J6(U

P
K1
, UK2

, t0, y0)
]

=

=
6
∑

m=4

α∗
mJm(U

P , t0, y0),

(29)

for all (t0, y0) ∈ [0, ϑ)× R
n where the constants

α∗
1 = 1, α∗

2 =
1

2

(

Λ11

Λ21

+
Λ12

Λ22

)

, α∗
3 =

1

2

(

Λ13 + α∗
2Λ23

Λ33

)

,

α∗
4 = 1, α∗

5 =
1

2

(

Λ44

Λ54

+
Λ45

Λ55

)

, α∗
6 =

1

2

(

Λ46 + α∗
5Λ45

Λ66

)

,

Λii > 0 is the largest root of ∆ii(Λ) = det[Dii − ΛEn] = 0, −Λij < 0 is the smallest root of the
equation δij(Λ) = det[Dij − ΛEn] = 0, (i, j ∈ {1, . . . , 6}, j 6= i), Λij > 0; a strategy profile
UP = (UP

1 , . . . , U
P
6 )÷

(

−D−1
1 (α∗)ΘP (t)y, . . . ,−D−1

6 (α∗)ΘP (t)y
)

.
So, we show that the strategy profile UP ∈ U found in the previous section of the

present paper is just a combination (UP
K1
, UP

K2
) = UP , where UP

K1
= (UP

1 , U
P
2 , U

P
3 ) and

UP
K2

= (UP
4 , U

P
5 , U

P
6 ) are found in (17)–(19). The proof of the validity of (29) is pre-

sented in article [7] for the game Γd, where the strategies UP
K2

= (UP
4 , U

P
5 , U

P
6 ) ∈ UK2

are frozen (see Proposition 3.1 from [7] for α∗ = 1, β = α∗
2, γ = α∗

3). Moreover, these
(UP

1 , U
P
2 , U

P
3 ) = UP

K1
just realize max

UK1
∈UK1

in (29) and this fact in combination with Prop-

erty 0.1 implies that (UP
K1
, UP

K2
) = UP is Pareto maximal for the three-criterion problem

〈

ẏ = u1 + u2 + u3, y(t0) = y0, UK1
,
{

Ji(U1, U2, U3, U
P
K2
, t0, y0)

}

i=1,2,3

〉

. Hence, the explicit

form of UP
K1

is UP
K1

= (UP
1 , U

P
2 , U

P
3 )÷

(

−D−1
1 (α∗)ΘP (t)y,−D−1

2 (α∗)ΘP (t)y,−D−1
3 (α∗)ΘP (t)y

)

and the corresponding payoffs can be found for UP
K1

∈ UK1
. The validity of UP

K2
=

= (UP
4 , U

P
5 , U

P
6 ) ÷

(

−D−1
4 (α∗)ΘP (t)y,−D−1

5 (α∗)ΘP (t)y,−D−1
6 (α∗)ΘP (t)y

)

and the explicit
form of payoffs (for UP

K2
= (UP

4 , U
P
5 , U

P
6 ) are established in the same way. Thus, we obtain the

validity of the following theorem.

T h e o r e m 6.1. Let for the differential coalitional game with non-transferable payoffs

Γd = 〈{K1 = {1, 2, 3}, K2 = {4, 5, 6}} , Σy, {UKl
}l=1,2, {JKl

(UK1
, UK2

, t0, y0)}l=1,2〉

the following restrictions be satisfied:

Dii > 0, Dij < 0, Ci < 0 (i, j = 1, . . . , 6; i 6= j); Λ11Λ22 < Λ12Λ21, Λ44Λ55 < Λ45Λ54.
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Then for the game Γd the coalitional Pareto optimal solution is formed by the quadruple
(

UP
K1
, UP

K2
; JK1

(UP
K1
, UP

K2
, t0, y0), JK2

(UP
K1
, UP

K2
, t0, y0)

)

∈ UK1
× UK2

× R
3 × R

3,

where UP
K1

= (UP
1 , U

P
2 , U

P
3 ) ∈ UK1

, UP
K2

= (UP
4 , U

P
5 , U

P
6 ) ∈ UK2

, UP
i ÷ −Di(α

∗)ΘP (t)y
(i = 1, . . . , 6) are symmetric constant matrices of dimensions n× n,

Di(α
∗) = α∗

1D1i(α
∗) + α∗

2D2i(α
∗) + α∗

3D3i(α
∗) + α∗

4D4i(α
∗) + α∗

5D5i(α
∗) + α∗

6D6i(α
∗)

(i = 1, . . . , 6),

α∗
1 = 1, α∗

2 =
1

2

(

Λ11

Λ21

+
Λ12

Λ22

)

, α∗
3 =

1

2

(

Λ13 + α∗
2Λ23

Λ33

)

,

α∗
4 = 1, α∗

5 =
1

2

(

Λ44

Λ54

+
Λ45

Λ55

)

, α∗
6 =

1

2

(

Λ46 + α∗
5Λ45

Λ66

)

,

continuous symmetric matrix of dimensions n× n

ΘP (t) =

{

C−1(α∗) +

∫ ϑ

t

[

D−1
1 (α∗) +D−1

2 (α∗) + . . .+D−1
6 (α∗)

]

dτ

}−1

,

JP
K1
[t0, y0] = JK1

(UP
K1
, UP

K2
, t0, y0) =

=
(

J1(U
P
K1
, UP

K2
, t0, y0), J2(U

P
K1
, UP

K2
, t0, y0), J3(U

P
K1
, UP

K2
, t0, y0)

)

,

JP
K2
[t0, y0] = JK2

(UP
K1
, UP

K2
, t0, y0) =

=
(

J4(U
P
K1
, UP

K2
, t0, y0), J5(U

P
K1
, UP

K2
, t0, y0), J6(U

P
K1
, UP

K2
, t0, y0)

)

,

JP
K1

= (y′0Θ1(t0)y0, y
′
0Θ2(t0)y0, y

′
0Θ3(t0)y0) , J

P
K2

= (y′0Θ4(t0)y0, y
′
0Θ5(t0)y0, y

′
0Θ6(t0)y0) ,

C(α∗) =
6
∑

i=1

α∗
iCi,

Θi(t) =
[

Y −1(t)
]′
[

Ci −

∫ ϑ

t

Y ′(τ)ΘP (τ)Mi(τ)Θ
P (τ)Y (τ) dτ

]

Y −1(t) (i = 1, . . . , 6),

Y (t) is a fundamental matrix of solutions for the system ẏ = N(t)y, Y (ϑ) = En,

N(t) = −

6
∑

i=1

D−1
i (α∗)ΘP (t), Mi(t) = ΘP (t)

[

6
∑

j=1

D−1
j (α∗)DijD

−1
j (α∗)

]

,

where Λii > 0 is the largest root of ∆(λ)det [Dii − ΛEn] = 0, −Λij < 0 is the smallest root of

the equation δij(Λ) = det [Dij − ΛEn] = 0 (i, j ∈ {1, . . . , 6}, i 6= j).
In this case, both coalitions are internally and externally stable.

P r o o f. It was established in [7] that if D11 > 0 then a Nash equilibrium does not exist in
the game Γd, but due to Proposition 5.1 from [7] there may be an objection to the internal stability
of coalition K1 (i. e., there are exists UT

1 ÷ αy and α∗ = const > 0 such that for all α > α∗ we
have J1(U

T
1 , U

P
2 , U

P
3 , U

P
K2
, t0, y0) > J1(U

P , t0, y0)).
Due to Proposition 5.4 from [7] and D12 < 0, in response to the objection, the player 2 from

coalition K1 must use ᾱ1 > 0 such that for all α > ᾱ1 and UC
2 ÷ αy we have

J1(U
T
1 , U

C
2 , U

P
3 , U

P
K2
, t0, y0) < J1(U

P , t0, y0).

Similarly, in view of D22 > 0, there exists a number ᾱ2 > 0 such that for all α > ᾱ2 we have

J2(U
T
1 , U

C
2 , U

P
3 , U

P
K2
, t0, y0) ≥ J2(U

T
1 , U2, U

P
3 , U

P
K2
, t0, y0) ∀U2 ∈ U2.

But then, for the strategy UC
2 and α > max{ᾱ1, ᾱ2}, the last two strict inequalities are combined

into a counter-objection to the internal stability of coalition K1 by player 1.
Thus, we have established the internal stability of K1. The internal stability of K2 is estab-

lished in the same way. �
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Conclusion

Now we have established that, if restrictions (16) are satisfied, then in the game Γd there exists
a coalitional Pareto-optimal solution (its explicit form can be found in Theorem 6.1). At the end of
the paper, we would like to mention that the techniques proposed here can be used to investigate
the stability of other coalition structures.
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Статья посвящена дифференциальным позиционным коалиционным играм с нетрансферабельны-
ми выигрышами (играм без побочных платежей). Авторы надеются, что исследования равновесия
угроз и контругроз для бескоалиционных игр, проведенные в последние годы, позволят охватить
некоторые аспекты коалиционных игр с нетрансферабельными выигрышами. В настоящей статье
мы рассматриваем вопросы внутренней и внешней устойчивости коалиций для класса позицион-
ных дифференциальных игр. Для дифференциальной позиционной линейно-квадратичной игры ше-
сти игроков с двухкоалиционной структурой получены коэффициентные критерии, обеспечивающие
внутреннюю и внешнюю устойчивость коалиционной структуры.
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