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Introduction

In fixed point theory for single-valued mappings, Banach contraction principle (for short,
BCP) [4] (1922) is perhaps the most celebrated and useful tool in all of analysis, in particular in
nonlinear analysis. It has been extended in different directions and many fixed point theorems.

In 1962, Edelstein mentioned in [9], to obtain a fixed point of strict contractive mappings
on a metric space (X,d) (d(Tx,Ty) < d(x,y) for all z # y € X)), it is necessary to add the
compactness assumption of the space.

In 1965, Browder [6] and Gohde [12] independently showed one of the most interesting
extensions of BCP by proving that every nonexpansive mapping whose Lipschitz’s constant equal
to 1 (that is |72 — Ty|| < ||z — y|| for all z,y € X) of a closed convex and bounded subset of
the Banach space X has a fixed point, if the subset is supposed to be uniformly convex (for each
0 < & < 2, there exists § > 0 such that for all ||z|| < 1,||y|| < 1 the condition ||z — y|| > ¢
implies that || %3] <1 — 6 see [8]).

For multivalued mappings (7: X — 2%), fixed point theory plays a major role in various
fields of pure and applied mathematics because of its many applications, for instance, game
theory, real and complex analysis, optimal control problems as well as integral inclusions etc.

Nadler (1969) [20] was the first mathematician who combined the concept of contraction (see
condition below) with the notion of multivalued mappings. In other words, the author in [20]
proved the existence of a fixed point u € X (i.e., u € Tw) on a metric space (X,d) for a
multivalued mapping 7" satisfying the following condition

H(Tz,Ty) < kd(z,y),

for all x,y € X where H is the Hausdorff metric induced by the metric d.

In 2012, Samet et al. [26] introduced the concept of a-admissible functions and «a--contrac-
tive mappings and established various fixed point theorems for such mappings in the setting of
complete metric spaces. Asl et al. [3] extended the notion of a-admissibility to a,-admissibility
for multivalued mappings and showed that «,-admissible function is also a-admissible, but the
converse may not be true as shown in [3]. For more detail see [14, 16,25].

On the other hand, very recently, in 2020 the authors in [29] introduced a new class of strict
contraction for multivalued mappings as follows

x;izlefx{d(x, y)— H(Tx,Ty)} >0 (0.1)
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and proved some fixed point results without the compactness assumption of the space. In this
direction, recent works can be found in [28,30-35].

Note that the fixed point theory of nonexpansive multivalued mappings is more difficult but
more important than the corresponding theory of single-valued mappings and the strict class of
multivalued mappings. So, it is a very natural question to ask: if we can extend (0.1) to

inf {d(z,y)— H(Tz,Ty)} >0

r#YeX

and prove, in this area, a fixed point theorem for a new class of nonexpansive multivalued
mappings. For further information on this topic, interested readers are directed to the latest
papers [2,13,36].

In this paper, via the concept of «a,-admissible functions [3] and the notion of symmetric
spaces discussed in [11] we give an affirmative answer to the above-asked question. In other
words, we introduce the concept of 7-contractive multivalued mappings and prove a fixed point
theorem for this type of contractions which is a class of nonexpansive multivalued mappings
without using neither the compactness nor the uniform convexity of the space X. Also, some
examples are presented to show the importance of the proven results.

Furthermore, motivated by the notion of 7-weakly contractive multivalued mappings in [29]
(see also, weakly contractive maps defined in [1,7]), we employ our first result to prove a fixed
point theorem for the newly called 7j3-weakly contractive multivalued mappings.

Moreover, as an application of our studies, we prove the existence of a solution for Volterra-
type integral inclusion

x(t) € f(t) +/0 K(t,s,x(s))ds, te]0,7], (0.2)

where K : [0,7] x [0,7] x R — P.,(R), where P.,(R) denotes the class of nonempty compact
and convex subsets of R. We point out that the study of (0.2) is under new and weak conditions.

After existence theorems, it is natural to find an iteration scheme to approximate the fixed
point. In this paper, we propose the following scheme:

T =2 € X,
Yn = (1 - an>xn + QU

Tp+1 = Wy, n €N,

where sequences {«,}, {,} are real sequences in (0,1) such that u,, € Pr(z,), v, € Pr(z,),
wy, € Pr(y,) and we denote by Pr(z) = {y € Tx: ||z — y|| = d(x, Tz)} for a multivalued map-
ping T: X — C(X), where C(X) denotes the family of all closed subsets of the space (X, d).

Our scheme converges faster compared to the existing ones in the literature, which is always
preferred in the practice.

§ 1. Preliminaries
The main purpose of this section is to introduce some concepts and results required in this

article. We begin with the following definition.

Definition 1.1 (see [37]). Let X be a nonempty set. A symmetric on X is a nonnegative
real valued function D on X x X such that

(i) D(z,y) =0 if and only if z = v,
(i) D(z,y) = D(y, ).
A symmetric space is a pair (X, D) where D is a symmetric on X.
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Definition 1.2 (see [11, Definition 2.1.1]). Let (X, D) be a symmetric space and A be a
nonempty subset of X.

(i) A is called D-closed if and only if A~ = A, where
A’ = {re X: D(x,A) =0} and D(x,A) =inf{D(x,y): y € A}.
(ii) A is called D-bounded if and only if §p(A) < oo, where
5p(A) = sup{D(z,y): 2,y € A}.

Definition 1.3 (see [11, Definition 2.1.2]). Let (X, D) be a D-bounded symmetric space
and let Cp(X) be the class of all nonempty D-closed sets of (X, D). Consider the function
Hp: 2% x 2% — R defined by

Hp(A, B) = max{sup D(a, B),sup D(b, A)},

acA beB
forall A, B € Cp(X). Hp is called the symmetric Hausdorff distance induced by D.

Remark 1.1. (Cp(X),Hp) is a symmetric space [11, Remark 2.1.1].
Recall that:

e A sequence in a symmetric space (X, D) is called a D-Cauchy sequence if it satisfies the

usual metric condition lim D(z,,z,) = 0.
n,Mm—00

e A symmetric space (X, D) is called S-complete if for every D-Cauchy sequence {z,},
there exists © € X such that lim D(x,x,) = 0.

n—oo
e A symmetric space (X, D) satisfies the axiom (W.4) given by Wilson [37]: if {z,} C X,
{yo} € X and z € X are such that lim D(z,,z) = 0 and lim D(z,,y,) = 0, then

n—o0 n—o0
lim D(y,,z) = 0.
n—oo

We state the following result.

Theorem 1.1 (see [11, Theorem 2.2.1]). Let (X, D) be D-bounded and S-complete sym-
metric space satisfying (W.4) and T: X — Cp(X) be a multivalued mapping such that

Hp(Tx,Ty) < kD(z,y), ke€][0,1), Vr,ye X.
Then there exists u € X such that u € Tu.

Definition 1.4 (see [19]). If ¢: X — 2Y, then a selection for ¢ is a continuous mapping
f: X — Y such that f(z) € ¢(z), where X and Y are two topological spaces.

Definition 1.5 (see [19]). A mapping T': X — 2V is called lower semicontinuous pro-
vided that, whenever x € X and V is an open set such that Tx NV # (), there exists an open
neighborhood U of x such that for all y € U, we have Ty NV # 0.

Theorem 1.2 (Michael’s selection theorem [19]). Let X be a paracompact space and 'Y be
a Banach space. Let F: X — 2Y be a lower semicontinuous multivalued map with nonempty
convex closed values. Then there exists a continuous selection f: X — Y of .

Lemma 1.1 (see [27, Lemma 2.2]). Let (X, d) be a metric space and A, B € CB(X),
where C'B(X) denotes the family of all bounded and closed subsets of (X, d). If there exists
~v > 0 such that

(i) for each a € A, there is b € B such that d(a,b) < ~,
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(ii) for each b € B, there is a € A such that d(b,a) < ~,
then H(A, B) < 7.

In 2012, Asl et al. [3] introduced the notion of .- -contractive multifunction type and
established some fixed point theorems for these mappings. Let us denote by ¥ the family of
nondecreasing functions ¢ : [0, 00) — [0, 00) such that ¢)"(t) < oo for all ¢ > 0, where ¢" is the
nth iterate of 1.

Definition 1.6 (see [3]). Let (X,d) be a metric space, T: X — 2% be a closed-valued
multifunction, ) € ¥ and a: X x X — [0, c0) be a function. We say that 7" is an «v,-1)-contractive
multifunction whenever o, (x,y)H (Tz, Ty) < ( (x,y)) for z,y € X, where H is the Hausdorff
metric and o, (A, B) = inf{a(a,b): @« € A, b € B}. Also, we say that 7" is a,-admissible
whenever a(z,y) > 1 implies o, (T'z, Ty) >1

Theorem 1.3 (see [3]). Let (X,d) be a complete metric space, a: X x X — Rt be
a function, ¢ € V be a strictly increasing map and T be a closed-valued, o.-admissible and
au-p-contractive multivalued mapping on X. Suppose that there exist vy € X and v, € Tz
such that o(xg, x1) > 1. Assume that if {z,} is a sequence in X such that o(x,,x,1) > 1 for
all n and {x,} converges to x, then a(x,,x) > 1 for all n € N. Then T has a fixed point.

At the end of this section, we recall the proven results in [29].

Lemma 1.2 (see [29, Lemma 2]). Let (X, d) be a bounded metric space.
() Let D(x,y) = e¥@¥) — 1 for all z,y € X, then (X, D) is a D-bounded symmetric space.
(ii) Let Hp(A, B) = efAB) — 1 for all A, B € Cp(X), then the function Hp is a symmetric
Hausdorff distance.

Theorem 1.4 (see [29, Theorem 3]). Let (X, d) be a bounded complete metric space and
let T' be a multivalued mapping from X into C(X). Suppose that

inf {d(x,y)— H(Tz,Ty)} > 0.
rF#yeX

Then T has a fixed point.
Definition 1.7 (see [29, Definition 5]). Let (X, d) be a metric space and T: X — C'(X)
be a multivalued mapping. 7" will be called a T-weakly contractive multivalued mapping if for

all z,y € X

where ¢: [1,00) — [0, 00) is a function satisfying:

(i) o(1) =
(i) inf 6(t) > 0

Theorem 1.5 (see [29, Theorem 4]). Let T: X — C(X) be a T-weakly contractive mul-
tivalued mapping of a bounded complete metric space (X,d). Then there exists u € X such
that u € Tu.

§ 2. Main results

In this section, we prove two auxiliary lemmas that we will need for the proof of our main
results.

Lemma2.1. Let (X, d) be a bounded complete metric space. Then (X, D) is a D-bounded
S-complete symmetric space, where D = e — 1.
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Proof. Let (X,d) beacomplete metric space and {x,} C X a D-Cauchy sequence. Then
lim D(zp,x,)=0,and hence lim d(z,,x,)= 0. Since X is complete, there exists u € X
n,Mm—00

,Mm—00

such that lim d(u,z,) = 0. Finally, we deduce that lim D(u,x,) = 0. O
n—oo

n—o0

Lemma2.2. Let (X, D) be a D-bounded and S-complete symmetric space such that (W.4)
is satisfied and let T: X — C(X) be an c.-admissible mapping satisfying

a(z,y)Hp(Tz, Ty) < kD(z,y),

Sfor all z,y € X and for a constant k € [0,1). Assume that there exist xq and x1 € Txy such
that a(xo, 1) > 1. Suppose that if {x,} C X is a sequence convergent to x € X such that
a(xy, Tpi1) > 1 for all n € N, then a(x,,x) > 1 for all n € N. Then T has a fixed point, that
is, u € T'u.

Proof. We suppose that D(zg,x1) > 0 and x; ¢ Tz, otherwise, the proof is finished. Let
a€ (k,1),s0

0 < D(x1,T1) < alzo, x1)Hp(Txo, Tx1) < kD(20,21) < aD(x0,21).
It follows that there exists x5 € T'x; such that
D(z1,x9) < aD(xg, 7).

Since o, (Txg, Tx1) > 1, x1 € Tz and x9 € Txy, we achieve a(xy, ) > 1.
If x5 € Tx,, the proof is completed. Assume that xo ¢ Tz, hence,

0 < D(x9,Txs) < a(xy,0)Hp(Tx1, Tro) < kD (21, 22) < aD(x1, x2),
which implies that there exists x3 € Tz, such that
D(z9,x3) < aD(xq,x2).

Repeating this process, we get a sequence {z,} C X satisfying: x,, € Tz,,_1, a(rp_1,7,) > 1
and
D(xy, Tpy1) < a"D(zg, x1),

for all n € N. Let n,m € N, we obtain
D(xp, Tpim) < a"D(xg, xp,) < a"dp(X),

where 6p(X) = sup{D(z,y): =,y € X}. Then {z,} is a D-Cauchy sequence which implies
that there exists u € X such that lim D(u,z,) = 0.

n—o0

Since a(x,,u) > 1, so there exists {y,} C T'u such that
D(zpi1,Tu) < a(zp, w)Hp(Tx,, Tu) < kD(z,,u),
for all n € N. Hence lim D(z,41,7u) = 0. Then there exists {y,} C Tu such that
n—oo

lim D(x,11,y,) = 0. Using (W.4), we obtain lim D(u,y,) = 0, which implies that
n—oo

n—oo

uEﬂD:TU. ]
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Now, we introduce the notion of 7jz-contractive multivalued mapping.

Definition2.1. Let T be a multivalued mapping of a bounded metric space (X,d). T is
said to be T3-contractive multivalued mapping if

inf {d(x, y) — H(Tx,Ty) + B(x, y)} > 0,

aAyeX
where 3: X x X — R is a function satisfying
Blx,y) <0 = [*(Tz,Ty) <0,
with
B*(Tx,Ty) = sup{f(a,b): a € Tz,b € Ty}.
We are ready to state and prove our main results.

Theorem 2.1. Let (X,d) be a bounded complete metric space and T: X — C(X) be a
Ts-contractive multivalued mapping such that:

(i) there exist vo € X and x1 € Tz such that 5(xq, x1) < 0,
(ii) if {x,} C X is a sequence convergent to v € X such that f(x,, 1) < 0 for alln € N,
then 3(x,,x) <0 foralln € N;

(iii) B(a,b) < ;an {d(:p,y) — H(Tz,Ty) + 5(x, y)}for all a,b € X.
TFYE
Then T’ has a fixed point u € X.

Proof. T is a Ts-contractive mapping, then there exists a function 3: X x X — R such
that

inf {d(az, y)— H(Tx,Ty) + B(z, y)} > 0.

r#yeX

We put

r#yeX

v=int ) = T2 T + o) |
hence for all x # y € X, we get
H(Tz, Ty) — B(z,y) < d(z,y) — 7.

So
Oé(.T, y)eH(T:v,Ty) S keal(m,y)7

where k = ¢™7 < 1 and a(z,y) = e ?@¥). Hence
afz,y)eTeTY) _ | < f(ed@y) — 1),

which implies that
a(:p,y)eH(Tx’Ty) —e 7 < k:(ed(“”’y) —1).

On the other hand, it follows from (iii) that —a/(z,y) = —e #(@¥) < —e~7. Then
Oé(l‘, y)HD(Txv Ty) S k’D(ZL’, y)7

for all z,y € X, with D(z,y) = e@¥) — 1 and Hp defined in Lemma 1.2.
Finally, we deduce from Lemma 2.1 and Lemma 2.2 that 7" has a fixed point u € X. U
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Example 2.1. Let X = {0,1}? be endowed with the metric d((z1,v1), (z2,72)) =
= |[(x1,y1) — (@2, y2)||l1 = |x1 — 22| + |y1 — y2|. We note that (X, d) is not a uniform convex
space, indeed:

Fore =1,z = (1,0) and y = (0, 1):

|zl =yl =1z —yli=2>1=cand ||z + y|i =1 >1—§ for each § > 0.

Define the following multivalued mapping 7" by

T(07 0) = T(lv O) = T(07 1) = {(07 0)}7 T(lv 1) = {(17 0)7 (07 1)7 (07 O)}>
and a function 5: X x X — R by

£((0,0),(0,0)) = 5((0,0), (1,0)) = 5((1,0), (0,0)) = 0,
5((0,0),(0,1)) = 5((0,1),(0,0)) =0,
A((1,0),(1,0)) = ((0,1),(0,1)) = 0,

B((1,1),(0,0)) = 5((0,0), (1, 1)) = 5((0, 1), (1, 1)) = 1/3,

A((1,1),(1,0)) = 5((1,0), (1,1)) = (1, 1), (1,0)) = 1/3,

and
A((1,1),(1,1)) = 1/4.
So, we have, for all z,y € X,
nt, {ato) ~ T2, T+ o)} 2 173

r#yeX
Then T satisfies all conditions of Theorem 2.1 and has the fixed point (0, 0).
Remark 2.1. Theorem 2.1 is a real and an important extension of Theorem 1.4. Indeed, the multi-
valued mapping defined in the above example is nonexpansive (i.e., H(Tz,Ty) < d(x,y)), therefore our

result ensures the existence of a fixed point for a class of nonexpansive multivalued contractions without
adding the uniform convexity of the space.

Example 2.2. Let X = B(0,1) x [0, 1], where B(0,1) is the unit closed ball of a real
Banach space of infinite dimension. Define the following metric on X by

L+ y—v|, ifx#a2
d ) ) ,7 ! = ’ ’
((x vl (@ y)) {|y—y’|, ife =o',

Define a multivalued mapping T by T'(z,y) = B(0,1) x {1 — y} for all (x,y) € X. Define a
function 5: X x X — R by

Bl.y), (@',y)) = {(1)/2’ y Eﬁi? ’ E%;

So, we have

Bl(z,y), (2',y) <0 = B (T(z,y), T(2",y) <0,
for all (x,y), (2/,y") € X. Then T satisfies all assumptions of Theorem 2.1 and 7" has the fixed
point which is equal to (0, 1/2). Moreover, we observe that X is not compact and

{0, @) - B0 T 0) + (@), ) b 2 17250
(zy)# (e’ y')eX
Then 7" is a multivalued 73-contractive mapping such that
plany <, at {dl@n), @) - HE@DTE D) +5() ) |
(zy)#(@' Yy )eX
for all a,b € X.
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Remark 22. Since for all z,y € X we have d(z,y) — H(Tz,Ty) = 0, Theorem 1.4 does not
ensure the existence of the fixed point. Also, we note that X is not compact.

In the following, 5: X x X — R is the function defined (on a metric space X) in the
Definition 2.1 and Theorem 2.1. In order to state the second result, we first give the following
definition.

Definition 2.2. @ is the class of all functions ¢: [1, +00) — R satisfying:
(i) inf o(t) > 0;
(i) ¢(1) < B(z,z) forall z € X.

Definition2.3. Let 7: X — C(X) be a multivalued mapping of a metric space (X, d).
T will be called a Ts-weakly contractive multivalued mapping if there exists ¢ € ® such that

forall z,y € X.

Theorem22. Let T: X — C(X) be a Tzg-weakly contractive multivalued mapping of a
bounded complete metric space (X,d). Then T has a fixed point.

Proof. Letx # y € X, which implies by Definition 2.3 that

0 < info(t) < o(1+d(z,y)) <d(w,y) = H(Tz,Ty) + Bz, y).

Then
n;f {d(z,y) — H(Tz,Ty) + B(z,y)} > 0.
z#y
By Theorem 2.1, T has a fixed point in X. U

Example2.3. Let X = {0, 1,2} with the usual metric d(z,y) = |x — y| for all z,y € X.
Define a multivalued mapping 7' by

T0= {0} and T1=1{0,1} =T2,
a function 5 : X x X — R by
1/2, ifz =y,
Blx,y) = .

and a function ¢: [1,00) — R by

1, ift > 1.

o(t) = {—1, ift =1,

We have ¢(1) = —1 < §(z, x) for all x € X. Further,
o) <3/2< int {dte.y) — HToTy) + 5o |
TFYE

forall a,b € X.
Hence, we have the following cases:

Casel: H(T0,T1)— B(0,1) = —1/2 <0 =d(0,1) — ¢(1 + d(0, 1)).
Case2: H(T0,T2)— B(0,2) = —1/2 <1 =d(0,2) — ¢(1 + d(0,2)).
Case3: H(T1,T2)— B(1,2) = —3/2 <0 =d(1,2) — ¢(1 + d(1,2)).

Then, T satisfies all assumptions in Theorem 2.2 and 0 € T°0.
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§ 3. Applications
§3.1. Integral inclusion

Different fixed point theorems have been used in several contexts to ensure the existence
of a solution for integral inclusions (see [10, 19, 23,24,27,29]). Throughout this section we
assume that X = C([0, 7], R) is the space of all continuous functions from [0, 7] (7 > 0) into R
and P.,(R) is the class of nonempty compact and convex subsets of R. If X is equipped with

d(z,y) = sup |z(t) — y(t)|, then (X,d) is a complete metric space. In this section, we first
tel0,7]
consider the following Volterra-type inclusion

+/ K(t,s,x(s))ds, tel0,7], (3.1)
0

where f € X and K: [0,7] x [0,7] x R — P,,(R). We suppose that the multi-valued mapping
K. (t,s) .= K(t,s,2(s)), (t,s) € [0,7]* is lower semicontinuous for each z € X.

Now, our main purpose is to weaken some conditions of Theorem 5 [29], so we define a
multivalued operator 7" by

Tx(t):{veX:v()ef /Kts:c())dste[OT]}

for all z € X.

According to Michael’s selection Theorem [19], for all x € X there exists a continuous
operator k, : [O 7] x [0,7] — R (selection) such that k,(t,s) € K,(t,s) for any ¢,s € [0, 7]
and hence f(t) + fo (t,s)ds € Tx(t) which leads to Tz # (). Moreover, Tz is a closed set
(see [27,29)).

We now have all the tools needed to prove the next result.

Theorem 3.1. Suppose that there exist M > 0 and a function n: X x X — R such that
forall s;t € [0,7], n €N, and x # y € X the following hypotheses hold:
(1)
1

n(z,y) 20 = H(K(t,s x(s)), K(t,5,9(5))) < —llz(s) = y(s)| = M], 52)
n(a,y) <0 = H(K({,s,2(s)), K(t,5,y(s))) < %Ix(S) —y(s)l;

(i) n(z,y) >0 = n(Tx,Ty) > 0, with n.(Tz, Ty) = inf{n(a,b): a € Tx, b € Ty};
(iii) there exist xo € X and x1 € Txqy such that n(zo, x1) > 0;
(iv) if {z,} C X is a sequence convergent to x € X with 1n(xy, x,1) > 0, then n(x,,z) > 0.

Then the integral inclusion (3.1) has a solution.

Proof Letz,y e X be such that a € T'z. Hence, there exists k.(t,s) € K,(t,s) for
t,s € [0,7] with a(t) = f(t) + fo (t,s)ds. So, the condition (3.2) implies that there exists
b(t,s) € K,(t,s) such that

n(z,y) >0 = |ku(t,s) = b(t, s)] <
n(z,y) <0 = |ky(t,s) —b(t,s)| <
for all ¢t,s € [0, 7].

69



In this step, let us consider the set-valued map S defined as follows:
ifn(z,y) >0 =
S(t,s) = Ky(t,s) N {w € R: [ky(t,5) —w| < 1[Ix(t s) —y(t, s)| = M]},
ifn(z,y) <0 =
S(t,s) = Ky(t,s) N{w € R: |k, (t,s) —w| < %|x(t, s) —y(t, s)|},
for all ¢, s € [0, 7].
Since S is a lower semicontinuous multivalued mapping, then, in view of Michael’s selection

theorem, there exists a continuous mapping k,: [0, 7] x [0, 7] — R such that k,(¢,s) € S(t, s),
for all ¢, s € [0, 7]. Therefore, we get

c(t):f(t)Jr/Otk(tsdsef /Ktsy t € [0,7],

¢ ¢
/ k. (t,s)ds —/ ky(t,s)ds|.
0 0

t

ifn(z,y) >0 = |a(t) —c(t)| < / \ky(t,s) — ky(t,s)| ds < d(x,y) — M,

and for any ¢ € [0, 7|, we have

la(t) —c(t)| =

Then, we have:

ifn(z,y) <0 = |a(t) - c(t)] < / kalt, ) — ky (£, )| ds < d(z, y),

which implies that:
ifn(z,y) >0 = d(a,c) <
ifn(z,y) <0 = d(a,c) <

forall x #y € X.
Now, define f: X x X — R by

Bay) = {0, if (. y) > 0,

1, otherwise.

It is straightforward to check the implication

Blz,y) <0 = Bu(x,y) <0.

Also, by interchanging the role of  and y and by using Lemma 1.1, we conclude that

inf {d(x,y)— H(Tx,Ty)+ B(z,y)} >0,
z#yeX

and hence T is a Tg-contractive multivalued mapping. Moreover, it is easy to see that the
conditions (1), (i1) and (iii) of Theorem 2.1 are satisfied. This theorem ensures the existence of a
solution for the Volterra-type integral inclusion (3.1). 0

Remark 3.1. If we take n(x,y) = 0 in Theorem 3.1 we obtain the statement of Theorem 5
proved in [29] (that is: if there exists M > 0 such that for all s,t € [0,7] and x # y € X we have
H(K(t,s,2(s)), K(t,s,y(s))) < L[lz(s) —y(s)| — M], then the integral inclusion (3.1) has a solution).
Therefore, our result is a real enhancement of this theorem.

70



§3.2. Approximation of the fixed point via a new and faster iterative process
In 2000, Noor [21] introduced the following iterative process for a mapping 7': X — X by

tl =1 € X,
tn+1 (1 - an)tn + &nTynu

(3.3)

where {«,}, {8,} and {7, } are real sequences in (0, 1).
In 2019, Okeke [22] gave the so-called Picard-Krasnoselskii iterative process as follows

T1 =T € Xa
Tni1 :Tvna

(3.4)

Un = (1 — ap)x, + @ Tuy,
Up = (1 - Bn)xn + BnTxnu n e N7

where {«,}, {8,} are real sequences in (0,1). The author in [22] showed that this iterative
scheme converges faster than the scheme introduced by Noor [21] and other known schemes in
the literature [15,17,18].

In the following, we give some needed definitions for our approach.

Definition3.1 (see[5]). Let {a,} and {b,} be two sequences of real numbers converging

to a and b respectively. If
_ |an, —a
lim =

n=oo |by —b]

then {a, } converges faster than {b,}.

Definition 3.2 (see [5]). Suppose that for two fixed point iterative processes {u,}
and {v, }, both converging to the same fixed point p, the error estimates

lun, —pll < an, v —pl| <b, forall neN,

are satisfied where {a, } and {b,} are two sequences of positive numbers converging to zero. If
{a,} converges faster than {b,}, then {u,} converges faster than {v,} to p.

Throughout this section, let (X, || - ||) be a bounded Banach space. For z € X, we denote
by Pr(z) ={y € Tz: ||z — y|| = d(x,Tz)} a multivalued mapping 7": X — C(X). Now, we
introduce the multivalued version of the scheme (3.4) as follows

T1 =T € X7
Yn = (1 - an)xn + apvp,

Tpt1 = Wh, n €N,

(3.5)

where {«a,}, {f,} are real sequences in (0, 1) such that
u, € Pr(xy,), v, € Pr(z,) and w, € Pr(y,).
Also, we can give the multivalued version of the Noor iterative process (3.3) as follows:
t1 =teX,
the1 = (1 — ap)ty, + apanp,

zZn = (1 = vn)tn + Yncn, n €N,

(3.6)
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where {a,, }, {f,} and {7, } are real sequences in (0, 1) such that
an € PT(yn)a bn € PT(Zn) and cy € PT(tn)
Now, we are able to state the following result

Theorem 3.2. Let X be a real Banach space such that T: X — C(X) with F(T) :=
={x € X:x € Tx} # 0. Wesuppose that Pr is a T-weakly contractive multivalued mapping
(see Theorem 1.5). Let {z,} be a sequence generated by the iteration scheme (3.5) such that
> 0y = 00. Then {x,} converges to v € F(T).

Proof. Since F(T) # 0, letu € F(T). From (3.5) it follows that
|01 — ull = lwp —ull < H(Pr(yn), Pr(u)) < llyn —ull = ¢(1+ |lyn —ul]) < [lyn —ull. 3.7)

From the assumptions that Pr is a 7T-weakly contractive multivalued mapping and (3.5), we
obtain

|y —ul] = [[(1 = an)xn + v, — u

IA

(1 = o) llzn — ull + anllvn — ul

(1 = an)lfon — ull + aH(Pr(z0), Pr(u) 68
(1 = an)lln = ull + @nlzn — ]l = and(1 + 120 — ul)

(1 = an)llzn — ull + anllzn — ul.

VAR VANRVAN

We have also

|20 —ull = |(1 = Bn)zn + Butin — ull
< (1= Bo)llzn — ull + Balltn — ul|

< (1= Bu)llen — ull + B H (Pr(2n), PT( ) 3.9)
< (1= B)llzn — ull + Pullzn — ull = Bro (1 + lzn — ul])
< [ln — ull

By combining with (3.8) and (3.9), we get
[gn = ull < (1= an)llzn = ull + anllzn —ull < flon —ull. (3.10)
From (3.7) and (3.10), we have
[Znr1 = ul| < [Jon —ul]. (3.11)
Therefore, {d,, = ||z, — u|| + 1} converges to d > 1. Now, from (3.7), (3.10) and (3.11), we get
dois < dy — B(d), (3.12)

where d, = 1+ ||y, — ul.
In the same manner, we can show that {d],} converges to d’ > 1.
If d =1, so, by (3.7), {z,,} converges to u.
If ' > 1, the inequality (3.12) implies that ¢(d!,) < d,, — d,,+1. Since 0 < o, 3, < 1, we have

[e.9]

Zanﬁn inf ¢(d),) Zanﬁn O(d,) <Y (dy—duy) S di — d.

n=1

This leads to a contradiction with the fact that ) «,, 3, = co. Therefore d' = 1, and hence d = 1

n=1

which implies that {z,,} converges to u. O
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In the following, we take ¢(1+1¢) = 14t and we prove that our new scheme converges faster
than the multivalued version of the Noor iterative process in the sense of Definition 3.2.

Theorem 3.3. The new introduced scheme (3.5) converges faster than the multivalued
version of the Noor iterative process (3.6).

Proof. From (3.5) and the proof of Theorem 3.2, we obtain
[z —ull < flzn—vl|—anfud(I+[lzn—ul]) < (A—onf)llzn—ull < ... < (1=onf)" |21 —ul],
for all n € N. Let
Ap = (1= anfn)" lz1 — ul. (3.13)
On the other hand, from (3.6) it follows that

< (1 =)ty — ull + anllan, — ul|
< (1= ap)lltn — ul| + anH(Pr(yn), Pr(u)) (3.14)
< (1= )it — ull + anllyn — ul.

[tn41 — ull

Also by (3.6), we have

[y — ull < (1 = Ba)lltn — ull + Bullbn — ul|
< (1= Bo)lltn — ull + BoH (Pr(z,), Pr(v)) (3.15)
< (1= B)lltn — ull + Ballzn — ul|

and

lzn = ull < 1T =) lltn — ull + ynllcn = ull
< (1 =y)lltn = ull + v H (Pr(tn), Pr(u)) (3.16)
< ltn = ull = mlltn — ull

By combining with (3.14), (3.15) and (3.16), we get

[t —ul] < (1= anBoyn)lltn —ull <o < (1= anfBoya)" ([t — ull],

for all n € N. Let

B, = (1 — anfBnyn)™||t1 — ul]- (3.17)

: A
Since v, B3y Yn < i, we conclude from (3.13) and (3.17) that lim B—" =0. O
n
Remark 3.2. In this application, the iterative process is more general than Noor’s iterative process

(see [21]) because of the following two reasons:

(1) the convergence is obtained only in a Banach space; compared to Noor iterative process, the con-
vergence is proved over a Hilbert space; in other words, we didn’t employ the inner product in any
step;

(2) we get the convergence in the setting of multivalued mappings, while Noor iterative process is
achieved only for single-valued mappings.
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10. Tyauns
MHoro3HauHble 0TOOpaKeHUsI: Pe3yJbTAThl 0 HENMOABHUKHOI TOYKE ¢ MCIOJb30BaHHEeM -(QyHKIUH
U HEKOTOpbIe NPUI0KEeHHs

Knroueswvie cnosa: HCIMMOABHKHAsA TOYKA, MHOI'O3HAYHBbIC OT06pa)KCHI/ISI, TB-MHOI‘OSH&‘{HOC CXKUMaAromiee
orobpaxenue, 13-cnabo C:KUMaroniee MHOIO3HAYHOE OTOOpPaKEHHUE, MHTErPAIbHOE BKIIOYEHUE, UTEPaLH-
OHHBI TTpolecc.

YIK: 517.98
DOI: 10.35634/2226-3594-2024-63-05

C nomoIpio Tak Ha3plBaeMOl [-(QhyHKIUH MOTyYeHBl HEKOTOPBIE PE3yNbTaThl O HEMOABMKHOM TOYKE LIS
HEepacIIMPSIIOINX MHOTO3HAYHBIX O0TOOpakeHWi. B maHHO# paboTe pe3ynbTaThl paccMaTpHBarOTCA B KOH-
TEKCTE IOJIHBIX METPUUYECKUX IIPOCTPAHCTB, KOTOPBIE HE SIBIIOTCS HU PABHOMEPHO BBINYKIIBIMU, HU KOM-
MakTHBIMU. [lomydeHHBIE pe3ynbTaThl paclIupAroT, OOBEIUHSIOT W YIyYIIaroT HECKOJIbKO HEeJaBHHUX pe-
3yNBTaTOB B CYIIECTBYIOLIEH JIUTEpaType. B 3akioueHne Mbl IPUMEHSIEM HAIllM HOBBIE PE3YJIbTaThl, YTOOBI
00eCTIeYnTh CyIEeCTBOBAHHE PEIICHUS i HeMTMHEWHOTO WHTETpajbHOTO BKIIoUeHHs. Kpome Toro, Mbl
aNMmpOKCUMHUPYEM HEMOABIDKHYIO TOUKY OoJiee OBICTPHIM HUTEPAIMOHHBIM TPOIIECCOM.
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