The Savage principle and accounting for outcome in single-criterion nonlinear problem under uncertainty

  • Vladislav Iosifovich Zhukovskii
    • Lomonosov Moscow State University
  • Lidiya Vladislavovna Zhukovskaya
    • Central Economic and Mathematical Institute of the Russian Academy of Sciences
  • Sergei Petrovich Samsonov
    • Lomonosov Moscow State University
  • Lidiya Viktorovna Smirnova
    • State University of Humanities and Technology
Keywords: outcome, risk, uncertainty, Pareto optimality, Wald principle, Savage principle

Abstract

In the middle of the last century the American mathematician and statistician professor of Michigan University Leonard Savage (1917-1971) and the well-known economist, professor of Zurich University (Switzerland) Jurg Niehans (1919-2007) independently from each other suggested the approach to decision-making in one-criterion problem under uncertainty (OPU), called the principle of minimax regret. This principle along with Wald principle of guaranteed result (maximin) is playing the most important role in guaranteed under uncertainty decision-making in OPU. The main role in the principle of minimax regret is carrying out the regret function, which determines the Niehans-Savage risk in OPU. Such risk has received the broad extension in practical problems during last years. In the present article we suggest one of possible approaches to finding decision in OPU from the position of a decision-maker, which simultaneously tries to increase the payoff (outcome) and to reduce the risk (i.e., “to kill two birds with one stone in one throw”). As an application, an explicit form of such a solution was immediately found for a linear-quadratic variant of the OPU of a fairly general form.

References

1. Diev V.S. Rationality and risk, Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya: Filosofiya, 2012, vol. 10, issue 4, pp. 14-20 (in Russian).
https://elibrary.ru/item.asp?id=18411209
2. Zhukovskiy V.I., Kudryavtsev K.N. Equilibrating conflicts under uncertainty. I. Analog of a saddle-point, Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2013, vol. 5, issue 1, pp. 27-44 (in Russian).
http://mi.mathnet.ru/eng/mgta102
3. Zhukovskiy V.I., Kudryavtsev K.N. Equilibrating conflicts under uncertainty. II. Analog of a maximin, Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2013, vol. 5, issue 2, pp. 3-45 (in Russian).
http://mi.mathnet.ru/eng/mgta107
4. Zhukovskii V.I., Boldyrev M.V., Kirichenko M.M. A solution guaranteed for a risk-neutral person to a one-criterion problem: an analog of the vector saddle point,
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2018, vol. 52, pp. 13-32 (in Russian).
https://doi.org/10.20537/2226-3594-2018-52-02
5. Markowitz H. Portfolio selection, The Journal of Finance, 1952, vol. 7, issue 1, pp. 77-91.
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
6. Mukhamedzyanova D.D., Sirazetdinov R.M., Ustinova L.N., Sirazetdinova E.R. The risk management system standardization at innovative enterprises, Ekonomika, Predprinimatel'stvo i Pravo, 2021, vol. 11, no. 12, pp. 2871-2886 (in Russian).
https://doi.org/10.18334/epp.11.12.113906
7. Zhukovskiy V.I., Zhukovskaya L.V. Risk v mnogokriterial'nykh i konfliktnykh sistemakh pri neopredelennosti (Risk in multi-criteria and conflict systems with uncertainty), Moscow: URSS, 2017.
8. Wald A. Contribution to the theory of statistical estimation and testing hypothesis, The Annals of Mathematical Statistics, 1939, vol. 10, no. 4, pp. 299-326.
https://www.jstor.org/stable/2235609
9. Wald A. Statistical decision functions, New York: Wiley, 1950.
10. Sawage L.J. The theory of statistical decision, Journal of the American Statistical Association, 1951, vol. 46, issue 253, pp. 55-67.
https://doi.org/10.1080/01621459.1951.10500768
11. Niehans J. Zur Preisbildung bei ungewissen Erwartungen, Swiss Journal of Economics and Statistics, 1948, vol. 84, issue 5, pp. 433-456.
https://www.econbiz.de/Record/zur-preisbildung-bei-ungewissen-erwartungen-niehans-j%C3%BCrg/10002568205
12. Zhukovskii V.I., Salukvadze M.E. The vector-valued maximin, New York: Academic Press, 1994.
13. Dmitruk A.V. Vypuklyi analiz. Elementarnyi vvodnyi kurs (Convex analysis. An elementary introductory course), Moscow: MAKS Press, 2012.
14. Voevodin V.V., Kuznetsov Yu.A. Matritsy i vychisleniya (Matrices and calculations), Moscow: Nauka, 1984.
15. Salukvadze M.E., Zhukovskiy V.I. The Berge equilibrium: a game theoretic framework for the Golden Rule of ethics, Cham: Birkhäuser, 2020.
https://doi.org/10.1007/978-3-030-25546-6
16. Zhukovskiy V.I., Salukvadze M.E. The Golden Rule of ethics, London: CRC Press, 2021.
https://doi.org/10.1201/9781003134541
17. Zhukovskiy V.I., Chikrii A.A., Soldatova N.G. Existence of Berge equilibrium in conflicts under uncertainty, Automation and Remote Control, 2016, vol. 77, issue 4, pp. 640-655.
https://doi.org/10.1134/S0005117916040093
18. Petrosjan L.A., Zenkevich N.A. Conditions for sustainable cooperation, Automation and Remote Control, 2015, vol. 76, issue 10, pp. 1894-1904.
https://doi.org/10.1134/S0005117915100148
19. Zhukovskiy V.I., Zhukovskaya L.V., Kudryavtsev K.N., Larbani M. Strong coalitional equilibria in games under uncertainty, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2020, vol. 30, issue 2, pp. 189-207.
https://doi.org/10.35634/vm200204
20. Petrosian O., Barabanov A. Looking forward approach in cooperative differential games with uncertain stochastic dynamics, Journal of Optimization Theory and Applications, 2017, vol. 172, issue 1, pp. 328-347.
https://doi.org/10.1007/s10957-016-1009-8
21. Petrosian O., Tur A., Wang Z., Gao H. Cooperative differential games with continuous updating using Hamilton-Jacobi-Bellman equation, Optimization Methods and Software, 2020, pp. 1-29.
https://doi.org/10.1080/10556788.2020.1802456
22. Ougolnitsky G.A., Usov A.B. Dynamic hierarchical two-player games in open-loop strategies and their applications, Automation and Remote Control, 2015, vol. 76, issue 11, pp. 2056-2069.
https://doi.org/10.1134/S0005117915110144
23. Gorelov M.A. Logic in the study of hierarchical games under uncertainty, Automation and Remote Control, 2017, vol. 78, issue 11, pp. 2051-2061.
https://doi.org/10.1134/S0005117917110108
24. Gorelov M.A. Risk management in hierarchical games with random factors, Automation and Remote Control, 2019, vol. 80, issue 7, pp. 1265-1278.
https://doi.org/10.1134/S000511791907004X
Received 2022-02-10
Published 2022-05-20
Section
Mathematics
Pages
25-40